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Abstract. The class of quantum integrable systems associated with root systems was introduced
(Olshanetsk M A and Perelome A M 1977 Lett. Math. Phys.2 7-13) as a generalization of

the Calogero—Sutherland systems (Calogero F 1PMath. Phys. 12 419-36, Sutherland B
1972Phys. Rev.A 4 2019-21). For the potentiallg) = «(x — 1) sin-2 ¢, the wavefunctions

of such systems are related to polynomialg irariables { is a rank of the root system) and are

a generalization of Gegenbauer polynomials and Jack polynomials (Jack HP180R. Soc.
EdinburghA 691-18). In PerelomoA M 1998 J. Phys. A: Math. Gen31L31-7, it was proved

that the series for the product of two such polynomialsisdeformation of the Clebsch—Gordan
series. This yields recurrence relations for these polynomials and, in particular, for generalized
zonal polynomials on symmetric spaces.

This paper follows my paper mentioned above and also Perelomov A M, Ragoucy E and
Zaugg Ph 1998. Phys. A: Math. Gen31L559-65. In the latter, the recurrence relations were
used to compute the explicit expressions fgrtype polynomials, i.e., for the wavefunctions of
the three-body Calogero—Sutherland system.

As shown by Ragoucy, Zaugg and Perelomov (see the appendix), similar results are also valid
in the A, case for the more general two-parameter deformatigsr {-deformation) introduced by
Macdonald (Macdonadll G 1988 Orthogonal polynomials associated with root systereprint).

1. Introduction

The class of quantum integrable systems associated with root systems was introduced in [1]
(see also [8,9]) as a generalization of the Calogero—Sutherland systems [2, 3]. Such systems
depend on one real parameteffor root systems of the typg,, D, andEs, E7, Eg), on two
parameters (foB,, C,, F4 andG;) and on three parameters for tB&,,. These parameters

are related to the coupling constants of the quantum system.

For the potentialv(q) = «(x — 1)sin"2g and special values of parameter the
wavefunctions correspond to the characters of the compact simple Lie grosp$)([10, 11]
or to zonal spherical functions on symmetric spaeces: (%, 2,4)[12,13]. At arbitrary values
of «, they provide an interpolation between these objects.

This class has many remarkable properties. Here we mention only one: the wavefunctions
of such systems are a natural generalization of special functions (hypergeometric functions) to
the case of several variables. The history of this problem and some results may be found in [9].
In [5], it was shown that the product of two wavefunctions is a finite linear combination of
analogous functions, namely, of functions that appear in the corresponding Clebsch—Gordan
series. In other words, this deformation-deformation) does not change the Clebsch—
Gordan series. For rank 1, we obtain the well known cases of the Legendre, Gegenbauer

T On leave of absence from the Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia.
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and Jacobi polynomials, and the limiting cases of the Laguerre and Hermite polynomials (see,
forexample, [14]). Some other cases were also considered in [4,7,15-32]. Ir{é&farmed
Clebsch—Gordan series was used in order to obtain the explicit expressions for the generalized
Gegenbauer polynomialst of typl which is what gives the explicit solution of the three-
body Calogero—Sutherland model. For special valuesef3, 2, 4, these formulae give the
explicit expressions for zonal polynomials of tyge.

Inthe appendix, analogous results obtained by Ragoucy, Zaugg and Perelomov for the two-
parameter family of polynomials of typ& introduced by Ruijsenaars [33] and Macdonald [7]
are presented.

2. General description

The systems under consideration are described by the Hamiltonian (for more details, see [9])

!
H=3p*+Ulq)  p’=@p.p =) r (2.1)
j=1
wherep = (p1, ..., p1), pj = —id/dq;, is a momentum operator, agd= (g1, ..., q;) is a

coordinate vector in thedimensional vector spade ~ R! with standard scalar produgt -).
The potentiall (¢) is constructed by means of a certain system of vea®drs: {«} in V (the
so-calledroot systems

U= gv@)  qu=(q  g=rala—1) g =g

aER*
if (a,a) =(B,B). (2.2)
Such systems are completely integrable for potentials of five types (see [9], f@4—-27,29]
for a general case). They are a generalization of the Calogero—Sutherland systems [2, 3] for
which {a} = {e; — ¢;}, {¢;} being a standard basis
In this paper, we consider in detail only the casetgfwith potentialv(g) = sin~2q.

3. Root systems

We give here only basic definitions. For more details, see [7, 34, 35].

Let V be al-dimensional real vector space with a standard scalar pradugt(a, ) =
> a;B;, and lets, be areflection in the hyperplane through the origin orthogonal to the vector
a,

Vv \ 2
Sag =q — (g, 2 ) a’ = a. (3.1)
(o, @)

Consider a finite set of non-zero vectdts= {«} generatingV and satisfying the following
conditions:

(1) For anyx € R, the reflectiors, conserveR : s, R = R.
(2) Foralle, B8 € R, we have(@”, B) € Z.

The set{s,} generates the finite groufy (R) which is called the Weyl group ak. The root
systemR is called areducedone only if+« are vectors collinear te in R.

Let us choose the hyperplane which does not contain any root. This hyperplane divides
the root system into two subse®,= R* | J R~, whereR" is called the set of positive roots.

T In some papers, the name Jack polynomials [4] is used. However, Jack polynomials are a very special case of the
polynomials under consideration. Therefore, we prefer to use the name generalized Gegenbauer polynomials for the
general case and Jack polynomials for the special case.



Quantum integrable systems and Clebsch—Gordan series: I 8565

In R*, there is the basirs, ..., oy} suchthatr = )", nja;,n; > 0, foranya € R*. Thisis
called the set of simple roots. The root syst&rs calledirreducibleif it cannot decompose
into two non-empty subse#®; and R, which are orthogonal to each other.

Let{os, ..., s} be the set of simple roots, I&" be the set of positive roots, aifil; } be
a dual basis or the basis of fundamental weiglts; o) = 6 jx.

Let O be the root lattice, an@* be the cone of positive roots:

] ]
0= ﬁ:ﬁ:ijaj,mJEZ} Q+:{y:y:anaj,njeN}. (3.2)
j=1 j=1
Let P be a weight lattice, an@#* be a cone of dominant weights:
]
P=3ir:1=

!
mj)»j, ijZ} P+:{/L:/L: i’lj)»j, }’ZJ‘GN}. (33)

j=1 j=1
Following [7, 18], we define a partial order ab as follows: A > w if and only if
A—pe QF,or(r, A;) = (u, rj)forall j =1,...,1. The set of linear combinations ovRr
of functionsf; (¢) = exp{2i(A, ¢)}, > € P,q € V, may be considered as the group algebra
overR of the free Abelian groug?. For anyA € P, we denote the corresponding element of
Aasé ~ f.(g). So, ée* = &, (¢)~1 = e*, and the identity element of as € = 1.
Then &, 1 € P, form anR-basis ofA.
The Weyl groupW (R) acts onP and hence also oa: s(¢*) = e* fors € W andi € P.
Let AV denotes the subalgebra vf-invariant elements ofl. It is evident that each-orbit
in P contains only one point i?*. Consequently, the monomial symmetric functions
my= Yy & re Pt (3.4)

neWw-r

form theR-basis ofA" .
4. The Clebsch—Gordan series
Let us recall the main results of [5] and specialize them to Ahecase with potential

v(g) = sin"2g4.
The Schédinger equation for this quantum system has the form

3 2
0
HV* = E(k)W* H = —A>+U(q1, 92, q3) Ap = E 8_c12 4.1)
j=1"1j

with potential

U(q1. 92, 43) = Kk (k — 1)(SIN"2(q1 — g2) + SiN"%(q2 — g3) +SiN (g3 — q1)). (4.2)
The ground state wavefunction and its energy are

3 K
V5(g) = (Hsin(qj - qk)> Eo() = 8%, (4.3)
j<k
Substituting¥s = ®§Wg in (4.1), we obtain
—ADL =50 A =M+ A g(k) = Ei(k) — Eok). (4.4)
Here the operatoa; takes the form
A icot( ) ( 0 0 ) (4.5)
=K q; —4q — . .
! j<k ! ‘ aq} aqk
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Itis easy to see that the set of symmetric polynomials in variable@iyp is invariant under
the action ofA*. Such polynomiatz;, is labelled by theSU (3) highest weighk = mA; +ni,,
with m, n being non-negative integers, ahg, being two fundamental weights. In general,

o5 =Y Clicm, w, A€ P my= Yy @ (4.6)

H<A veW-u

where P* denotes the cone of dominant weighis,is the Weyl group, and’;' (x) are some
constants.

As was shown in [5], the product of two wavefunctions is a finite sum of wavefunctions
(a sort ofx-deformed Clebsch—Gordan series):

QLS = N Cp ()DL, (4.7)

veD, (1)

In this equationD,, (x) = (D, +X) N P*, whereD,, is a weight diagram of the representation
with the highest weight.

Since @}, are symmetric functions of expig;), it is convenient to use a new set of
variables:

71 = e2i‘11 + e2i‘12 + eZi’B
7o = eA@ta) 4 2ilartas) 4 iastqr) (4.8)
3= ?i@1+q2+qa)

In the centre-of-mass fram@ {. ¢; = 0), the wavefunctions depend only on two variables
chosen ag; andz; (in this casezz = 1). In these variables, up to a normalization factor, we
have

A* = (22 — 322)07 + (25 — 320)93 + (2122 — 9182 + (3kc + 1) (2191 + 229p) (4.9)

whered; = 9/9z;. Corresponding eigenvalues are

2 2

+n°+mn+3k(m+n). (4.10)

Em,n (K) =m

We shall use the normalization for polynomidt$ such that the coefficient at the highest
monomial is equal to one. Denoting them By ,, we have

Py . (21,22) = Z Chi(k)zy 25 = z7'z5 + lower terms (4.11)
p.q

with p+¢g > m+nandp —g =m —n (mod 3. Asitis easy to see, the first polynomials are
Poo=1 Plo=121 Py1 = 22 (4.12)
Simple consequences of (4.7) fBf = Pj, or Py, are [5]

K _ pk K K
<1 Pm,n - Pm+l,n + am,"l (K)Pm,nfl + Cm (K)mel,ﬂ"'l

22 P = Py A (K Py + Ca() Pl g (4.13)
where

A (K) = G () = € () Copnic (K)

Cm (k) = % e(m) = # (4.14)

Below we shall construct such polynomials using these recurrence relations.
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5. A, case

Now we proceed to the case df, ~ su(3). In this case, the representatignof A, is
characterized by two non-negative numbes d,,,, .
We start with the Clebsch—Gordan series

d10® dyp+1,0 = dp20 D dp 1

(5.1)
dOl ® an = dn,l S dn71,0~
Excludingd, 1, we obtain
dy-1,0 © (do1 ® dyo) © (d10 ® dy+1,0) © dps20 =0
or
Xn—1,0 = 22Xn,0 ¥ Z1Xn+1,0 — Xn+20 =0 (5.2)
where the following notations are introduced:
21 = x10 = €" + &% + %,
_ — i 4 i o aifs (5.3)
72 = Xo1=¢€ +e +e .
From this, we obtain the expression for the generating function
o0
Fi(z1, 725 u) = 21, 22)u”"
o(z1, z2; u) ;Xno(l 2) (5.4)
Fi(z1, 223 u) = (1 — zqu + zou® — u®)™.
Let us define now the-deformed functiongs,{o(zl, z2) by the formula
) ~
F“(z1, 223 u) = (L — zqu + z20u® — u®) ™ = Z Py o(za, z2)u". (5.5)
n=0
Analogously toA; case, we may obtain all other formulae from this one.
Differentiating F* onu, z; andz,, we get
F; =« (zl —272u + 3u2) Feit
Ff . =+ Du® F<*? FY . =k + Dut F<*2
F ., =K@+ DulFe*? uFy =k(ziu — 2zou® + 3ud) F<Ht
and
DL?F" = {k(zau — Azou® + W) (1 — zqu + zou? — u®)
+ic (i + 1) (zqu — 2zou® + 3u®)?} FF+?
D, = uau
or
(1 — zqu + zou? — ug)FLf = k(21 — 2zou + 3u?)F* (5.6)
(n+3) Pz — 2+ 2P+ 2+ Py —nPf = «z2aPliy — 2czoPq + SKP}”; .
So, we obtain the important recurrence formula
(n+3)Pfag=(n+2+K)21Pfy 0 — (n+ 1+ 2) 2Py o+ (1 + 36) Py 0. (5.7)

Now let us differentiate”* onz;. We have
Ff = kuF<t, (5.8)
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Hence

0, Pfo=nPSt,. (5.9)
Analogously,

Ff = —ku?FL. (5.10)
Therefore,

nn—-1 .4
k+n—1 "20
Finally, we have the basic differential equation #0f(z1, z2; u):
(D% + D% + D, D.,) — 32202, — 32102 — 99,0, + 3c(D,, + D)) F*
= (D?+ 3¢ D,)F*(z1, z2; 1) D., =210, D.,=220z2 D, = ud,.

Ko
aZZPn,O - =

Let us note that the normalization of polynomiﬁlﬁo(zl, z7) follows from the expression
(5.5) for the generating function. Namely,

DK (K)n n (K)n K
Plo(z1,22) = pr gt = o 0(21, 22) (5.11)

where
)y =W kK+1...k+tn—-1.

The main property of this normalization is th&;o(zl, z2) has a polynomial dependence
on the parametex.
Now we shall consider other Clebsch—Gordan series ferl:

d1,0 ® dp+1,0 = dy+2,0 D dy 1.
According to [5], the analogous formula is valid for an arbitrary value,dfe.,
anz1Ply 0 = by 13:+2,o +n ﬁf,l (5.12)

where coefficients,,, b, andc,, do not depend oty andz, but may depend on. Comparing
coefficients at;*? yields

a,=k+n+1 b,=n+2.
From this relation, we may determine the functip, up to the normalizing constan:
(k)P = (k +n+ D21 Pl g — M+ 2Py (5.13)

Let us now calculate the generating function for both left- and right-hand sides of this
equation,

o0
G* =) culic) Py(z1. 22)
n=0

L (5.14)
KZ1 21
G = —=(Ff — 1)+ =FF — Z(FF —

(F =D+ o — S (Ff — kzaw)
where

o0 B o0 _

F§=> Prou" Ff = nPfou" = D,F§

n=0 n=0

and

1
G = ﬁ(/czlu — (1—zu)D,)F}.
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Finally,
G* = k(222 — (2122 + Ju + 2z3u®) F™ (5.15)
From this, follows the three-term recurrence relation
Pfy = k(22Pft — (a2 + 3) P o+ 201 P15 ).
Let us give also the explicit expression fé,ﬁo(zl, 22) andﬁ,’;l(zl, z2) in other variables
1=€%+e%+d% = x; +x,+x3
7o = g1 4 g7l 4 g0 — X1X2 + Xox3 + X3X1.
As was shown in [22],

D ,0
Py = Z Co g (RO)XT x5 x5 mi+mo+mz=n X1xox3 =1 (5.16)
msy,ma,m3
where quantitie€.° () arex-deformed three-nomial coefficients
n! (k) my (K my (1)
C;:t’lomz ms (k) = e (517)
e mllmglmg! (K)n

The functionP; may be defined by the formula

Py 51(z1,22) = 2P, 19— Puo

b 1
P:iz’l(zl, 22) = Z C”;l’mz,mg(K)lex;nzxgg' (5.18)
miy,mp,m3
We obtain
n,1 _ ,~n-10 n—1,0 n—1,0 n,0
Cotoma () = Co 2 (k) + Cp e g )+ Co = O (). (5.19)

Substituting the explicit expression fay:° (x), we get

1,M2,m3

n,1 n,0 n,1
le,mz,m3 (K) = le,mz,m3(K)Sm1,m2,m3 (5‘20)
where
1 k—1+n mi my ms n
Srmams = + + - ) (5.21)
12,3 n k—1+m; k—1+my Kk—1+mg «—1+n
Atk = 1, the quantitys;®, . (x) is equal to two. Asc — oo, it has an ordex~* and
is a symmetric function ofi1, mo, m3z. So, it should have a form

— 12+ Bk -1+
s = Q- DTrpue—Dry (5.22)
vz (e = 1+my)(k — 1 +mo)(k — 1 +m3)
Now let us follow [6] and construct the general polynomials in terms of the simplest

polynomials (Jack polynomialg), , and Py ,. We get

m,

min(m,n) ]
PmKOP(I)(,n = Z yr;un Péﬂ',nﬂ' (523)
i=0

wherey,;;ﬂ are given by the explicit expressiont

yio= (€)' (m); (n); B +m+n —1—1i), . (5.24)
' ilk+m—1;k+n—-10;2c+m+n—1i);

where
@' =x(x+D...(x+i -1
x)y=x(x—=1...(x —i+1).
The constructive aspect of this formula is in its inverted form.

(5.25)

T Note that this expression ftp;fly,, may be obtained from the general Macdonald formula [36]; however, the method
of proof given in [6] is more convenient here.
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Theorem 1 ([6]). The generalized Gegenbauer polynomiBfs, of typeA are given by the
formula

min(m,n)
- Z IBm nt m— IOPOVL i (526)
where the constants), , are
g = (—.1)i c+m+n— 2.1. (m);(n); (k)i Bk +m +n — 1); ' (5.27)
’ i! 3k+tm+n—i W+m—-1D,;(k+n—-1);2k +m+n—1);
Note thats;, , are obtained by use of the relation
__Zlenym jn—j* (528)

From this theorem, we see that the construction of a general polynatfjialis similar
to the construction ofSU(3) representations from tensor products of two fundamental
representations.

Likewise, we can consider other types of decompositions, such as

min(m,n)

Pr’; OPnO_ Z ymn m+n —2i,i* (529)

The proof is analogous to (5.23) (see the footnote on page 7). The coeﬁiﬁj,gpme given
by the formula
(k) (m); (n);(2c +m+n —1—1i);

frznz . —. (5.30)
’ le+m—D;(k+n—1);(k+m+n—1i);

Theorem 2 ([6]). There is another formula for polynomialy; , atm > n

?rz+n n® m,n Z IBm n m+n+z O n— (531)
where

5o D (m+2) tm+n)  (m) (n)i

ﬁm’n T () m m+n+1) k+m+1)i (k+n—1); ’ (5.32)

This theorem follows directly from equation (5.29). The coefficiefﬁg are found by
use of the relation

lgrln n +n+1n z) 1Zﬂl11n)7nz+ri+/n —-j* (533)
As a by-product, letus speC|aI|ze equation (5.26) to theeasd, whereP,, , are nothing

but theSU (3) characters. We get
Pril';,n = Pr:rIL-OP(;Ln - Prslhfl,OP(infl' (534)

From this, we easily deduce the generating functionsSfg3) characters (see, for example,
(37])
1—uv

Glu. v) = myn pl - _ . 5.35
(M U) Z uvr,, (1—Z1u +ZZM2 _u3)(1_zzv+zlv2 — U3) ( )

m,n=0
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6. The integral representation for the case ofV = 3

The integral representation for the caseNof= 2 coincides with the integral representation
for the Gegenbauer polynomials and is well known (see, for example, [14]).

For the special values af (x = % 1, 2, 4), wavefunctions are related to zonal spherical
functions. The integral representation of these functions was obtained by Harish-Chandra by
integrating on the some Lie group[12,13].

Following [32] let us now consider thé, case (V = 3) forx = % K = SO@3,R). The
elemenk € K = SO (3, R) may be represented by three unit vectors orthogonal to each other

n,l,m n=P=m?=1 (n,) =(1,m)=(m,n) =0.

Here the integral representation for zonal spherical polynomials has the form

® ) = [ [Ean) [Eatim D duonl)  xj=dv (6.)
K
where
Ei(xj;n) = n%xl + n%xz + n§x3 Eo(xjin, ) = Z(njlk — nklj)zx‘,-xk
Jj<k

and the integration is taken on the orthogonal gr&up= SO (3, R), which is equivalent to
the space of two unit orthogonal vectarsand!.
Noting thatm; = e;jn;l;, we also haverx, = x37,.... Hence®,, is given by (6.1)

where

Bo(xj;n, 1) =m%x1_1+m2x2_1+m3x3_1. (6.2)
For vectors: andm, the standard parametrization through the Euler anglésandy may
be used:

n = (Cosy sing, sing sing, cosh) m = COSy -a +Ssiny - b

a = (—sing, cosy, 0) b = (— cosy cosh, — sing cosh, sing)
with du(k) = du(n, m) = Asing dd dp dyy. Hence in the preceding expression we have a
three-dimensional integral which may be calculated by using of the generating functions.

(6.3)

7. The generating function for the case ofV = 3

Following [32] let us define the generating function of zonal spherical polynomials £or—;
by the formula

F(x1, X2, X33 11, 12) = »_ Py, 1, (x1, Xp, X3)1' 15 (7.1)
Then we obtain the integral representation

2 1
F(x1,x2,x3; 11, 02) = / |:l_[(1 — &j(x;n, 1//)fj)] du(n)du(y).  (7.2)
j=1

Let a andb be two unit orthogonal vectors in two-dimensional plane orthogonal to the
vectorn. Then on this plane an arbitrary unit vectarhas the form cog¢ - a + siny - b.
Integrating first on g () we get

F(x1, X2, X3; 11, 1) = / B Y (m)C™Y2(n) dpu(n) / du(m) =1  (7.3)

where

B=1- (n%xl + n%xz + n%)Cg)tl C=(01- xz_ltg)(l — xg_ltz)n% +.-- (7.4)
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The crucial step for the further integration is the use of the formula
B lc Y2 = /lds [B(1—&£2)+Ce? %2 (7.5)
Using this, we obtain ’
F(x1, %2, X3; 11, 1) = fo o / [E(x1, x2, x3; 11, 12,1, )] ¥ du(n) - (7.6)

where
E ; = ; Z 7.7
(-xlv X2, X35 11, 2, 1, f) - Z ej (-xlv X2, X35 11, 12, é)nj ( . )
J

We can now integrate onydn). Finally we obtain the one-dimensional integral
representation for the generating function

1
F(x1, x2, X3 t1, 1) = / d& [H (x1, x2, x3; 11, 12, £)] /2 (7.8)
0
whereH = hihoh3, and functions:; (¢; 11, o) are given by formulae
hiE 1) =1—d;(t, 1) (L—E%)  dj(n, 1) = (xjin + x5 't — tato). (7.9)

From this it follows that ifz; = x1 + xo + x3 andzs = x1x, + xox3 + x3%1, then
H = ad — ai[z1m1 + 2212] + aolzo7? + 2172 + (2122 — 3) 1177
—[t+ 73 + o (25 — 2z0) 11 + (2f — 222)72]] (7.10)
whereag = 1+(1—&£%)t1tp, 11 = (L — €21, 1o = (1 — £?)1,. Note that from (7.10) it follows
that integral (7.8) is an elliptic one and may be expressed in terms of standard elliptic integrals.
ExpandingF (x1, x2, x3; t1, t2) In power series of the variable we obtain

F(x1, X2, X3 11, ) = i F,(x1, X2, X3, 1)t5. (7.11)
We have .

Fo(x1, x2, x3; 1) = /lds [Ho] /2 (7.12)
and ’

Fi = %/ldg Hy[Ho]/? (7.13)
where ’

Hy = 1—Z11’1+22‘L'12 — Tf
Hi = (1 -89z — [38% + z120(1 — ED)]ma + 2228 + (L - D) 23] 7] — 2075
From integral representation (7.8), many useful formulae may be obtained. Here we give
only one of them, namely, as, zo — oo,

3 (3)n @i
q)m,n(z ,22) N Am,nzpzq Am,n =227 —_.
1, 22 122 1), (D), (%)mm

One can also show [38] that for arbitrarythe analogous integral representation is valid

00 1
F'Grzzing) = Y. Ana()Py, (12 = / [H] ™ du &) (7.15)
0

m,n=1

(7.14)

whereH is given by (7.10) P, , (z1, z2) ~ 27’25 asz1, z2 — oo, and
_ 1T () (26) () (K)n (26)mn
d K — l _ 2\12¢—-1 Am " J— X
o =5 =50 " Z37TGO On@Da G
Note that for the case under consideration another integral representatiénf@® was
obtained in [31] in terms of F» hypergeometric series.

(7.16)
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Appendix. Some formulae for Macdonald polynomials for theA, case (by Perelomov,
Ragoucy and Zaugg)

Let us give first some necessary for us information. For other results and details, see [36].
The Macdonald polynomials of typ&, may be defined as polynomial eigenfunctions of
the Macdonald difference equation

1p(, ,
MIPY (x4, x2, x3) = APLD (x1, X2, x3) P, = 7725 + lower terms A1)
71 =Xx1tx2+Xx3 72 = X1X2 + X2X3 + X3X1 73 = X1X2X3
where
1 (tx; — xi)
M'=[]—5T,  Tif(xaxz,x3) = fgri,x2,x3),....  (A2)

ik (= xi)
The Macdonald polynomials satisfy the following recurrence relation:

N N N
ZleEz;lI) (217 22, Z3) = ny'l(i—l’)n + Am.n (q, Z)P,,(Zni]_ + bm,n (6], Z)Priq_jin.;.l (AS)

where
Amn = Cn5m+n bmn =Cm
B e e e
m (1—1tg™)(1—tgm 1) (A.4)
. 1— tqmﬂl 1— t3qm+n—l
Cm+n (q’ t) = 1— [2qm+n 1— t2qm+nfl :
Note that
Cm (Qa 1) =Cn (q’ CI) =1 5m+n (Qa 1) = Em+n (CI, 61) =1 (AS)

Now let us consider the case= ¢, k being aninteger. Inthis case, the explicit expression
for the generating function of polynomiafy’y = P.%" has the form

k=1
GOw =[] FHa’w

G® (i) = Ji ckpXur (A.6)
k:{ﬂ [x], = [x][x +1]...[x +n — 1] [x]:ll__qx.

From this we get a three-term recurrence relation analogous to (5.7)
[n+1]Pk, = [k +n]z1 P* — [2k +n — 1]zoPF | +[3k +n — 2]z3PF , (A7)
which follows from the recurrence relation
(1 — zau + zou” — zu®)GP () = (1 = zaug" + z2u’q™ — z3u’¢*) G (qu). (A8)
From here, we obtain
e 5 o e+l , 2] s [

P0=1 P]’_(Z[K]Zl Pz— Pm,O-

el 2 "0 = Tl
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Let us also give the formula for the generating function for the case of arbitrary

< (1—q'tu) i
G — | | = 17 E (q, J. A.9
- =0 (1—q/u) = ¢(q.Du (A9)

Using the results from the book [36], it is not difficult to get the formulae

@ pan (@.0)
N3 N3 [ N3
P({O P0(€1 = Z yiil,npmq—i,n—i (Alo)
i=0
where
i @@ g i g Dilgm g, (A11)
Y = S A oLy (qn1y. g1y (gmtn—iz2- ;1. )
(q; @i(g" ;g7 1)i(g" 159 Dig 297
and
min(m,n) (
@.) plg.t) - 0
PnZO Pn,qO = Z Vr[n,npngi-n—Zi,i (A12)
—
where
. - - —i-1,2. -
(6" g Tig" g i@ T g7, (A13)

(g @i(gm M g i T g (@ g Y
Inverting formulae (A.10) and (A.11) as in [6], we arrive at the following theorem.
Theorem 1(a). The Macdonald polynomialg.?;’ of typeA, are given by the formula
min(m,n)

P(q,t)z Z 'Bi P(IIJ) P(q,t) (A14)
i=0

m,n m,n* m—i,0" O,n—i

where constantg! have the form

m,n
g2 g Dil=q"" % (@™ a i g Dilg™" g
(@ Q)i 1—qmm=ie3 (gmt; g7 Di(g" s g~ Di(gm 2 g7

In similar way, we get the following theorem.

Bhn = (-1

Theorem 2(a). The Macdonald polynomialg,(ﬁ;f) of type A, are given by the formula

~n
ym+n,n m,n m,n* m+n+i,0

PO =3Bl P PO m=n A.15
n—i,0
i=0

where constantg;, , are given by formula (A.13), and

G = 1ygiinrl g i A=¢""%) (@ @iq" a7 i q)i
i (@i A—g™ @ @)i(g"™ e q)i(g ;g7 1),

From theorems 1(a) and 2(a), many interesting identities may be obtained. Here we give
one of them:

l . i . .
Kk _ IETY i(j1)/2[3k+n_21]( [k—]+1][3k+n—]]>
S"”—,;( Ve [3k +n —i] Ul 1 [Rk+n—]]

lfifl[k+j][3k+n_l_l'_j_1] B
X<,l-:£[j+1] 2k +n—1—i—j] )_0 (A.17)

(A.16)

where p] = (1 —-¢")/(1—q).
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The simplest version of this formula is

! .
- k+l—i—1]
_1yigii-vrzL =0. A.18
;( )'d LI — [k — ]! (A18)
We give below thdist of polynomialsP,.%; atm +n < 4:
Pg’=1  P'=au A=z
@n _ 2 A—q)d+1)
P. =z1—-—
2,0 1 (1_ qt)
1—g)(L+1+1?)
pan ¢
1.1 2122 (1 — qtz) 23
plan _ 5 (A-a)@+q*i+2qn (1-@)*A+q)(L+1 +t’1)Z
0.7 1-q% M A—gna—g2y 7

(q.1) 2 A-9@+n , (1_612)(1_6][3)

s (A—q)B+25+q*+1+2q1 +34°)

P =11 T 2322
LA-9)?A+g+qH) A+ *+41)
(1—g?H(1—q%) 2

+(1—q)2(1 +q)(2+q +qg?+1+2gt+q%t +1%+qt? + 29%1?)
(1—q%)(1—q°)
A-@@R+q+t+2qt) , A—-¢>A—-4%3 ,
- 1— ¢ 2T A - g
(1—q)?
(1-q?H (1 —q%?)
+3qt2 +4q2t2 + Zq3t2 +qt3+ 2q2t3 + 2q3t3)Z2Z3
(L-g)d+1)
1—gt
1-¢)@3g +6]2 — 3+ 2q2t +q3t — 2 _ th2 + 3q3t2 _ qt3 _ 3q2t3)
- (1= gD - g%

2123

(q.1) 3
Ps?l = Z]_ZZ

X (2+2q +q?+2t +4q1 +3¢% + g%t +12

@n _ 2.2 3..3
P57 =z325 — (25 +2323)

XZ12223
LA A+ A+ 415)(g — 14 4% = g + g2 = ?F) ,
(1—gt)(1— g% (1 —q%?) ¥
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