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Abstract. The class of quantum integrable systems associated with root systems was introduced
(Olshanetsky M A and Perelomov A M 1977 Lett. Math. Phys.2 7–13) as a generalization of
the Calogero–Sutherland systems (Calogero F 1971J. Math. Phys. 12 419–36, Sutherland B
1972Phys. Rev.A 4 2019–21). For the potentialv(q) = κ(κ − 1) sin−2 q, the wavefunctions
of such systems are related to polynomials inl variables (l is a rank of the root system) and are
a generalization of Gegenbauer polynomials and Jack polynomials (Jack H 1970Proc. R. Soc.
EdinburghA 691–18). In Perelomov A M 1998J. Phys. A: Math. Gen.31L31–7, it was proved
that the series for the product of two such polynomials is aκ-deformation of the Clebsch–Gordan
series. This yields recurrence relations for these polynomials and, in particular, for generalized
zonal polynomials on symmetric spaces.

This paper follows my paper mentioned above and also Perelomov A M, Ragoucy E and
Zaugg Ph 1998J. Phys. A: Math. Gen.31 L559–65. In the latter, the recurrence relations were
used to compute the explicit expressions forA2-type polynomials, i.e., for the wavefunctions of
the three-body Calogero–Sutherland system.

As shown by Ragoucy, Zaugg and Perelomov (see the appendix), similar results are also valid
in theA2 case for the more general two-parameter deformation ((q, t)-deformation) introduced by
Macdonald (Macdonald I G 1988 Orthogonal polynomials associated with root systemsPreprint).

1. Introduction

The class of quantum integrable systems associated with root systems was introduced in [1]
(see also [8, 9]) as a generalization of the Calogero–Sutherland systems [2, 3]. Such systems
depend on one real parameterκ (for root systems of the typeAn,Dn andE6, E7, E8), on two
parameters (forBn, Cn, F4 andG2) and on three parameters for theBCn. These parameters
are related to the coupling constants of the quantum system.

For the potentialv(q) = κ(κ − 1) sin−2 q and special values of parameterκ, the
wavefunctions correspond to the characters of the compact simple Lie groups (κ = 1) [10,11]
or to zonal spherical functions on symmetric spaces (κ = 1

2, 2, 4) [12,13]. At arbitrary values
of κ, they provide an interpolation between these objects.

This class has many remarkable properties. Here we mention only one: the wavefunctions
of such systems are a natural generalization of special functions (hypergeometric functions) to
the case of several variables. The history of this problem and some results may be found in [9].
In [5], it was shown that the product of two wavefunctions is a finite linear combination of
analogous functions, namely, of functions that appear in the corresponding Clebsch–Gordan
series. In other words, this deformation (κ-deformation) does not change the Clebsch–
Gordan series. For rank 1, we obtain the well known cases of the Legendre, Gegenbauer

† On leave of absence from the Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia.
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and Jacobi polynomials, and the limiting cases of the Laguerre and Hermite polynomials (see,
for example, [14]). Some other cases were also considered in [4,7,15–32]. In [6], aκ-deformed
Clebsch–Gordan series was used in order to obtain the explicit expressions for the generalized
Gegenbauer polynomials† of typeA2 which is what gives the explicit solution of the three-
body Calogero–Sutherland model. For special values ofκ = 1

2, 2, 4, these formulae give the
explicit expressions for zonal polynomials of typeA2.

In the appendix, analogous results obtained by Ragoucy, Zaugg and Perelomov for the two-
parameter family of polynomials of typeA2 introduced by Ruijsenaars [33] and Macdonald [7]
are presented.

2. General description

The systems under consideration are described by the Hamiltonian (for more details, see [9])

H = 1
2p

2 +U(q) p2 = (p, p) =
l∑

j=1

p2
j (2.1)

wherep = (p1, . . . , pl), pj = −i∂/∂qj , is a momentum operator, andq = (q1, . . . , ql) is a
coordinate vector in thel-dimensional vector spaceV ∼ Rl with standard scalar product(·, ·).
The potentialU(q) is constructed by means of a certain system of vectorsR+ = {α} in V (the
so-calledroot systems):

U =
∑
α∈R+

g2
αv(qα) qα = (α, q) g2

α = κα(κα − 1) gα = gβ
if (α, α) = (β, β). (2.2)

Such systems are completely integrable for potentials of five types (see [9] forAl ; [24–27,29]
for a general case). They are a generalization of the Calogero–Sutherland systems [2, 3] for
which {α} = {ei − ej }, {ej } being a standard basis inV .

In this paper, we consider in detail only the case ofA2 with potentialv(q) = sin−2 q.

3. Root systems

We give here only basic definitions. For more details, see [7,34,35].
Let V be al-dimensional real vector space with a standard scalar product(·, ·), (α, β) =∑
αjβj , and letsα be a reflection in the hyperplane through the origin orthogonal to the vector

α,

sαq = q − (q, α∨)α α∨ = 2

(α, α)
α. (3.1)

Consider a finite set of non-zero vectorsR = {α} generatingV and satisfying the following
conditions:

(1) For anyα ∈ R, the reflectionsα conservesR : sαR = R.
(2) For allα, β ∈ R, we have(α∨, β) ∈ Z.
The set{sα} generates the finite groupW(R) which is called the Weyl group ofR. The root
systemR is called areducedone only if±α are vectors collinear toα in R.

Let us choose the hyperplane which does not contain any root. This hyperplane divides
the root system into two subsets,R = R+⋃R−, whereR+ is called the set of positive roots.

† In some papers, the name Jack polynomials [4] is used. However, Jack polynomials are a very special case of the
polynomials under consideration. Therefore, we prefer to use the name generalized Gegenbauer polynomials for the
general case and Jack polynomials for the special case.
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In R+, there is the basis{α1, . . . , αl} such thatα =∑j njαj , nj > 0, for anyα ∈ R+. This is
called the set of simple roots. The root systemR is calledirreducible if it cannot decompose
into two non-empty subsetsR1 andR2 which are orthogonal to each other.

Let {α1, . . . , αl} be the set of simple roots, letR+ be the set of positive roots, and{λj } be
a dual basis or the basis of fundamental weights:(λj , αk) = δjk.

LetQ be the root lattice, andQ+ be the cone of positive roots:

Q =
{
β : β =

l∑
j=1

mjαj , mj ∈ Z
}

Q+ =
{
γ : γ =

l∑
j=1

njαj , nj ∈ N
}
. (3.2)

Let P be a weight lattice, andP + be a cone of dominant weights:

P =
{
λ : λ =

l∑
j=1

mjλj , mj ∈ Z
}

P + =
{
µ : µ =

l∑
j=1

njλj , nj ∈ N
}
. (3.3)

Following [7, 18], we define a partial order onP as follows: λ > µ if and only if
λ− µ ∈ Q+, or (λ, λj ) > (µ, λj ) for all j = 1, . . . , l. The set of linear combinations overR
of functionsfλ(q) = exp{2i(λ, q)}, λ ∈ P , q ∈ V , may be considered as the group algebraA

overR of the free Abelian groupP . For anyλ ∈ P , we denote the corresponding element of
A as eλ ∼ fλ(q). So, eλeµ = eλ+µ, (eλ)−1 = e−λ, and the identity element ofA as e0 = 1.
Then eλ, λ ∈ P , form anR-basis ofA.

The Weyl groupW(R) acts onP and hence also onA: s(eλ) = esλ for s ∈ W andλ ∈ P .
LetAW denotes the subalgebra ofW -invariant elements ofA. It is evident that eachW -orbit
in P contains only one point inP +. Consequently, the monomial symmetric functions

mλ =
∑
µ∈W ·λ

eµ λ ∈ P + (3.4)

form theR-basis ofAW .

4. The Clebsch–Gordan series

Let us recall the main results of [5] and specialize them to theA2 case with potential
v(q) = sin−2 q.

The Schr̈odinger equation for this quantum system has the form

H9κ = E(κ)9κ H = −12 +U(q1, q2, q3) 12 =
3∑
j=1

∂2

∂q2
j

(4.1)

with potential

U(q1, q2, q3) = κ(κ − 1)(sin−2(q1− q2) + sin−2(q2 − q3) + sin−2(q3− q1)). (4.2)

The ground state wavefunction and its energy are

9κ
0 (q) =

( 3∏
j<k

sin(qj − qk)
)κ

E0(κ) = 8κ2. (4.3)

Substituting9κ
λ = 8κ

λ9
κ
0 in (4.1), we obtain

−1κ8κ
λ = ελ(κ)8κ

λ 1κ = 12 +1κ
1 ελ(κ) = Eλ(κ)− E0(κ). (4.4)

Here the operator1κ
1 takes the form

1κ
1 = κ

3∑
j<k

cot(qj − qk)
(
∂

∂qj
− ∂

∂qk

)
. (4.5)
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It is easy to see that the set of symmetric polynomials in variables exp(2iqj ) is invariant under
the action of1κ . Such polynomialmλ is labelled by theSU(3) highest weightλ = mλ1 +nλ2,
with m, n being non-negative integers, andλ1,2 being two fundamental weights. In general,

8κ
λ =

∑
µ6λ

C
µ
λ (κ)mµ µ, λ ∈ P + mµ =

∑
ν∈W ·µ

e2i(q,ν) (4.6)

whereP + denotes the cone of dominant weights,W is the Weyl group, andCµλ (κ) are some
constants.

As was shown in [5], the product of two wavefunctions is a finite sum of wavefunctions
(a sort ofκ-deformed Clebsch–Gordan series):

8κ
µ 8

κ
λ =

∑
ν∈Dµ(λ)

Cνµλ(κ)8
κ
ν . (4.7)

In this equation,Dµ(λ) = (Dµ +λ)∩P +, whereDµ is a weight diagram of the representation
with the highest weightµ.

Since8κ
µ are symmetric functions of exp(2iqj ), it is convenient to use a new set of

variables:

z1 = e2iq1 + e2iq2 + e2iq3

z2 = e2i(q1+q2) + e2i(q2+q3) + e2i(q3+q1)

z3 = e2i(q1+q2+q3).

(4.8)

In the centre-of-mass frame (
∑

i qi = 0), the wavefunctions depend only on two variables
chosen asz1 andz2 (in this case,z3 = 1). In these variables, up to a normalization factor, we
have

1κ = (z2
1 − 3z2)∂

2
1 + (z2

2 − 3z1)∂
2
2 + (z1z2 − 9)∂1∂2 + (3κ + 1)(z1∂1 + z2∂2) (4.9)

where∂i = ∂/∂zi . Corresponding eigenvalues are

εm,n(κ) = m2 + n2 +mn + 3κ(m + n). (4.10)

We shall use the normalization for polynomials8κ
λ such that the coefficient at the highest

monomial is equal to one. Denoting them byP κm,n, we have

P κm,n(z1, z2) =
∑
p,q

Cp,qm,n(κ)z
p

1z
q

2 = zm1 zn2 + lower terms (4.11)

with p + q > m +n andp− q ≡ m− n (mod 3). As it is easy to see, the first polynomials are

P κ0,0 = 1 P κ1,0 = z1 P κ0,1 = z2. (4.12)

Simple consequences of (4.7) forP κλ = P κ1,0 or P κ0,1 are [5]

z1P
κ
m,n = P κm+1,n + am,n(κ)P

κ
m,n−1 + cm(κ)P

κ
m−1,n+1

z2P
κ
m,n = P κm,n+1 + ãm,n(κ)P

κ
m−1,n + cn(κ)P

κ
m+1,n−1

(4.13)

where

am,n(κ) = ãn,m(κ) = cn(κ)cm+n+κ(κ)

cm(κ) = e(m)

e(κ +m)
e(m) = m

m− 1 +κ
.

(4.14)

Below we shall construct such polynomials using these recurrence relations.
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5. A2 case

Now we proceed to the case ofA2 ∼ su(3). In this case, the representationd of A2 is
characterized by two non-negative numbersd = dmn.

We start with the Clebsch–Gordan series

d10⊗ dn+1,0 = dn+2,0⊕ dn,1
d01⊗ dn0 = dn,1⊕ dn−1,0.

(5.1)

Excludingdn,1, we obtain

dn−1,0	 (d01⊗ dn0)⊕ (d10⊗ dn+1,0)	 dn+2,0 = 0

or

χn−1,0 − z2χn,0 + z1χn+1,0 − χn+2,0 = 0 (5.2)

where the following notations are introduced:

z1 = χ10 = eiθ1 + eiθ2 + eiθ3,

z2 = χ01 = e−iθ1 + e−iθ2 + e−iθ3.
(5.3)

From this, we obtain the expression for the generating function

F 1
0 (z1, z2; u) =

∞∑
n=0

χn0(z1, z2)u
n

F 1
0 (z1, z2; u) = (1− z1u + z2u

2 − u3)−1.

(5.4)

Let us define now theκ-deformed functions̃P κn,0(z1, z2) by the formula

Fκ(z1, z2; u) = (1− z1u + z2u
2 − u3)−κ =

∞∑
n=0

P̃ κn,0(z1, z2)u
n. (5.5)

Analogously toA1 case, we may obtain all other formulae from this one.
DifferentiatingFκ onu, z1 andz2, we get

Fκu = κ
(
z1− 2z2 u + 3u2

)
Fκ+1

Fκz1,z1
= κ(κ + 1)u2Fκ+2 Fκz2,z2

= κ(κ + 1)u4Fκ+2

Fκz1,z2
= −κ(κ + 1)u3Fκ+2 uFκu = κ(z1u− 2z2u

2 + 3u3)F κ+1

and

D2
uF

κ = {κ(z1u− 4z2u
2 + 9u3)(1− z1u + z2u

2 − u3)

+κ(κ + 1)(z1u− 2z2u
2 + 3u3)2}Fκ+2

Du = u∂u
or

(1− z1u + z2u
2 − u3)F κu = κ(z1− 2z2u + 3u2)F κ

(n + 3)P̃ κn+3− z1(n + 2)P̃ κn+2 + z2(n + 1)P̃ κn+1− nP̃ κn = κz1P̃
κ
n+2− 2κz2P̃

κ
n+1 + 3κP̃ κn .

(5.6)

So, we obtain the important recurrence formula

(n + 3)P̃ κn+3,0 = (n + 2 +κ)z1P̃
κ
n+2,0 − (n + 1 + 2κ)z2P̃

κ
n+1,0 + (n + 3κ)P̃n,0. (5.7)

Now let us differentiateFκ on z1. We have

Fκz1
= κuF κ+1. (5.8)
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Hence

∂z1P
κ
n,0 = nP κ+1

n−1,0. (5.9)

Analogously,

Fκz2
= −κu2Fκ+1. (5.10)

Therefore,

∂z2P
κ
n,0 = −

n(n− 1)

κ + n− 1
P κ+1
n−2,0.

Finally, we have the basic differential equation forFκ(z1, z2; u):
((D2

z1
+D2

z2
+Dz1Dz2)− 3z2∂

2
z1
− 3z1∂

2
z2
− 9∂z1∂z2 + 3κ(Dz1 +Dz2))F

κ

= (D2
u + 3κDu)F

κ(z1, z2; u) Dz1 = z1∂z1 Dz2 = z2∂z2 Du = u∂u.
Let us note that the normalization of polynomialsP̃ κn,0(z1, z2) follows from the expression

(5.5) for the generating function. Namely,

P̃ κn0(z1, z2) = (κ)n

n!
zn1 + · · · = (κ)n

n!
P κn,0(z1, z2) (5.11)

where

(κ)n = (κ)(κ + 1) . . . (κ + n− 1).

The main property of this normalization is thatP̃ κn,0(z1, z2) has a polynomial dependence
on the parameterκ.

Now we shall consider other Clebsch–Gordan series forκ = 1:

d1,0⊗ dn+1,0 = dn+2,0⊕ dn,1.
According to [5], the analogous formula is valid for an arbitrary value ofκ, i.e.,

anz1P̃
κ
n+1,0 = bnP̃ κn+2,0 + cnP̃

κ
n,1 (5.12)

where coefficientsan, bn andcn do not depend onz1 andz2 but may depend onκ. Comparing
coefficients atzn+2

1 yields

an = κ + n + 1 bn = n + 2.

From this relation, we may determine the functionP̃n,1 up to the normalizing constantcn:

cn(κ)P̃
κ
n,1 = (κ + n + 1)z1P̃

κ
n+1,0 − (n + 2)P̃ κn+2,0. (5.13)

Let us now calculate the generating function for both left- and right-hand sides of this
equation,

Gκ =
∞∑
n=0

cn(κ) P̃
κ
n,1(z1, z2)

Gκ = κz1

u
(F κ0 − 1) +

z1

u
Fκ1 −

1

u2
(F κ1 − κz1u)

(5.14)

where

Fκ0 =
∞∑
n=0

P̃ κn,0u
n F κ1 =

∞∑
n=0

nP̃ κn,0u
n = DuF

κ
0

and

Gκ = 1

u2
(κz1u− (1− z1u)Du)F

κ
0 .
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Finally,

Gκ = κ(2z2 − (z1z2 + 3)u + 2z1u
2)F κ+1

0 . (5.15)

From this, follows the three-term recurrence relation

P̃ κn,1 = κ(2z2P̃
κ+1
n,0 − (z1z2 + 3)P̃ κ+1

n−1,0 + 2z1P̃
κ+1
n−2,0).

Let us give also the explicit expression forP̃ κn,0(z1, z2) andP̃ κn,1(z1, z2) in other variables

z1 = eiθ1 + eiθ2 + eiθ3 = x1 + x2 + x3

z2 = e−iθ1 + e−iθ2 + e−iθ3 = x1x2 + x2x3 + x3x1.

As was shown in [22],

P̃ κn,0 =
∑

m1,m2,m3

Cn,0m1,m2,m3
(κ)x

m1
1 x

m2
2 x

m3
3 m1 +m2 +m3 = n x1x2x3 = 1 (5.16)

where quantitiesCn,0m1,m2,m3
(κ) areκ-deformed three-nomial coefficients

Cn,0m1,m2,m3
(κ) = n!

m1!m2!m3!

(κ)m1(κ)m2(κ)m3

(κ)n
. (5.17)

The functionP̃ κn,1 may be defined by the formula

P̃ κn−2,1(z1, z2) = z1P̃
κ
n−1,0 − P̃n,0

P̃ κn−2,1(z1, z2) =
∑

m1,m2,m3

Cn,1m1,m2,m3
(κ)x

m1
1 x

m2
2 x

m3
3 . (5.18)

We obtain

Cn,1m1,m2,m3
(κ) = Cn−1,0

m1−1,m2,m3
(κ) +Cn−1,0

m1,m2−1,m3
(κ) +Cn−1,0

m1,m2,m3−1− Cn,0m1,m2,m3
(κ). (5.19)

Substituting the explicit expression forCn,0m1,m2,m3
(κ), we get

Cn,1m1,m2,m3
(κ) = Cn,0m1,m2,m3

(κ)Sn,1m1,m2,m3
(5.20)

where

Sn,1m1,m2,m3
= κ − 1 +n

n

(
m1

κ − 1 +m1
+

m2

κ − 1 +m2
+

m3

κ − 1 +m3
− n

κ − 1 +n

)
. (5.21)

At κ = 1, the quantitySn,1m1,m2,m3
(κ) is equal to two. Asκ →∞, it has an orderκ−1 and

is a symmetric function ofm1,m2,m3. So, it should have a form

Sn,1m1,m2,m3
= α(κ − 1)2 + β(κ − 1) + γ

(κ − 1 +m1)(κ − 1 +m2)(κ − 1 +m3)
. (5.22)

Now let us follow [6] and construct the general polynomials in terms of the simplest
polynomials (Jack polynomials)P κm,0 andP κ0,n. We get

P κm,0P
κ
0,n =

min(m,n)∑
i=0

γ im,nP
κ
m−i,n−i (5.23)

whereγ im,n are given by the explicit expression†

γ im,n =
(κ)i(m)i(n)i(3κ +m + n− 1− i)i

i!(κ +m− 1)i(κ + n− 1)i(2κ +m + n− i)i (5.24)

where
(x)i = x(x + 1) . . . (x + i − 1)

(x)i = x(x − 1) . . . (x − i + 1).
(5.25)

The constructive aspect of this formula is in its inverted form.

† Note that this expression forγ im,n may be obtained from the general Macdonald formula [36]; however, the method
of proof given in [6] is more convenient here.
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Theorem 1 ([6]). The generalized Gegenbauer polynomialsP κm,n of typeA2 are given by the
formula

P κm,n =
min(m,n)∑
i=0

βim,nP
κ
m−i,0P

κ
0,n−i (5.26)

where the constantsβim,n are

βim,n =
(−1)i

i!

3κ +m + n− 2i

3κ +m + n− i
(m)i(n)i(κ)i(3κ +m + n− 1)i

(κ +m− 1)i(κ + n− 1)i(2κ +m + n− 1)i
. (5.27)

Note thatβim,n are obtained by use of the relation

βim,n = −
i−1∑
j=0

βjm,nγ
i−j
m−j,n−j . (5.28)

From this theorem, we see that the construction of a general polynomialP κm,n is similar
to the construction ofSU(3) representations from tensor products of two fundamental
representations.

Likewise, we can consider other types of decompositions, such as

P κm,0P
κ
n,0 =

min(m,n)∑
i=0

γ̃ im,nP
κ
m+n−2i,i . (5.29)

The proof is analogous to (5.23) (see the footnote on page 7). The coefficientsγ̃ im,n are given
by the formula

γ̃ im,n =
(κ)i (m)i (n)i(2κ +m + n− 1− i)i

i!(κ +m− 1)i(κ + n− 1)i(κ +m + n− i)i . (5.30)

Theorem 2 ([6]). There is another formula for polynomialsP κm,n atm > n:

γ̃ nm+n,nP
κ
m,n =

n∑
i=0

β̃im,nP
κ
m+n+i,0P

κ
n−i,0 (5.31)

where

β̃im,n =
(−1)i

i!
(κ)i

(m + 2i)

m

(κ +m + n)i

(m + n + 1)i
(m)i

(κ +m + 1)i
(n)i

(κ + n− 1)i
. (5.32)

This theorem follows directly from equation (5.29). The coefficientsβ̃im,n are found by
use of the relation

β̃im,n = −(γ̃ n−im+n+i,n−i )
−1

i−1∑
j=0

β̃jm,nγ̃
n−i
m+n+j,n−j . (5.33)

As a by-product, let us specialize equation (5.26) to the caseκ = 1, whereP κm,n are nothing
but theSU(3) characters. We get

P 1
m,n = P 1

m,0P
1
0,n − P 1

m−1,0P
1
0,n−1. (5.34)

From this, we easily deduce the generating function forSU(3) characters (see, for example,
[37])

G1(u, v) =
∞∑

m,n=0

umvnP 1
m,n =

1− uv
(1− z1u + z2u2 − u3)(1− z2v + z1v2 − v3)

. (5.35)
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6. The integral representation for the case ofN = 3

The integral representation for the case ofN = 2 coincides with the integral representation
for the Gegenbauer polynomials and is well known (see, for example, [14]).

For the special values ofκ (κ = 1
2, 1, 2, 4), wavefunctions are related to zonal spherical

functions. The integral representation of these functions was obtained by Harish-Chandra by
integrating on the some Lie groupK [12,13].

Following [32] let us now consider theA2 case (N = 3) for κ = 1
2,K = SO(3,R). The

elementk ∈ K = SO(3,R)may be represented by three unit vectors orthogonal to each other

n, l,m n2 = l2 = m2 = 1 (n, l) = (l, m) = (m, n) = 0.

Here the integral representation for zonal spherical polynomials has the form

8pq(x) =
∫
K

[41(xj ; n)]p[42(xj ; n, l)]q dµ(n, l) xj = eiqj (6.1)

where

41(xj ; n) = n2
1x1 + n2

2x2 + n2
3x3 42(xj ; n, l) =

∑
j<k

(nj lk − nklj )2xjxk

and the integration is taken on the orthogonal groupK = SO(3,R), which is equivalent to
the space of two unit orthogonal vectorsn andl.

Noting thatmk = εkij ni lj , we also havex1x2 = x−1
3 , . . . . Hence8pq is given by (6.1)

where

42(xj ; n, l) = m2
1x
−1
1 +m2x

−1
2 +m3x

−1
3 . (6.2)

For vectorsn andm, the standard parametrization through the Euler anglesϕ, θ andψ may
be used:

n = (cosϕ sinθ, sinϕ sinθ, cosθ) m = cosψ · a + sinψ · b
a = (− sinϕ, cosϕ, 0) b = (− cosϕ cosθ,− sinϕ cosθ, sinθ)

(6.3)

with dµ(k) = dµ(n,m) = A sinθ dθ dϕ dψ . Hence in the preceding expression we have a
three-dimensional integral which may be calculated by using of the generating functions.

7. The generating function for the case ofN = 3

Following [32] let us define the generating function of zonal spherical polynomials forκ = 1
2

by the formula

F(x1, x2, x3; t1, t2) =
∑

8l1,l2(x1, x2, x3)t
l1
1 t

l2
2 . (7.1)

Then we obtain the integral representation

F(x1, x2, x3; t1, t2) =
∫ [ 2∏

j=1

(1−4j(x; n,ψ)tj )
]−1

dµ(n) dµ(ψ). (7.2)

Let a andb be two unit orthogonal vectors in two-dimensional plane orthogonal to the
vectorn. Then on this plane an arbitrary unit vectorm has the form cosψ · a + sinψ · b.
Integrating first on dµ(ψ) we get

F(x1, x2, x3; t1, t2) =
∫
B−1(n)C−1/2(n) dµ(n)

∫
dµ(n) = 1 (7.3)

where

B = 1− (n2
1x1 + n2

2x2 + n2
3x3)t1 C = (1− x−1

2 t2)(1− x−1
3 t2)n

2
1 + · · · . (7.4)
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The crucial step for the further integration is the use of the formula

B−1C−1/2 =
∫ 1

0
dξ [B(1− ξ2) +Cξ2]−3/2. (7.5)

Using this, we obtain

F(x1, x2, x3; t1, t2) =
∫ 1

0
dξ
∫

[E(x1, x2, x3; t1, t2, n, ξ)]−3/2 dµ(n) (7.6)

where

E(x1, x2, x3; t1, t2, n, ξ) =
∑
j

ej (x1, x2, x3; t1, t2, ξ)n2
j . (7.7)

We can now integrate on dµ(n). Finally we obtain the one-dimensional integral
representation for the generating function

F(x1, x2, x3; t1, t2) =
∫ 1

0
dξ [H(x1, x2, x3; t1, t2, ξ)]−1/2 (7.8)

whereH = h1h2h3, and functionshj (ξ ; t1, t2) are given by formulae

hj (ξ ; t1, t2) = 1− dj (t1, t2)(1− ξ2) dj (t1, t2) = (xj t1 + x−1
j t2 − t1t2). (7.9)

From this it follows that ifz1 = x1 + x2 + x3 andz2 = x1x2 + x2x3 + x3x1, then

H = a3
0 − a2

0 [z1τ1 + z2τ2] + a0[z2τ
2
1 + z1τ

2
2 + (z1z2 − 3)τ1τ2]

−[τ 3
1 + τ 3

2 + τ1τ2[(z2
2 − 2z1)τ1 + (z2

1 − 2z2)τ2]] (7.10)

wherea0 = 1 +(1− ξ2)t1t2, τ1 = (1− ξ2)t1, τ2 = (1− ξ2)t2. Note that from (7.10) it follows
that integral (7.8) is an elliptic one and may be expressed in terms of standard elliptic integrals.

ExpandingF(x1, x2, x3; t1, t2) in power series of the variablet2 we obtain

F(x1, x2, x3; t1, t2) =
∞∑
q=0

Fq(x1, x2, x3; t1)tq2 . (7.11)

We have

F0(x1, x2, x3; t) =
∫ 1

0
dξ [H0]−1/2 (7.12)

and

F1 = 1
2

∫ 1

0
dξ H1[H0]−3/2 (7.13)

where

H0 = 1− z1τ1 + z2 τ
2
1 − τ 3

1

H1 = (1− ξ2)z2 − [3ξ2 + z1z2(1− ξ2)]τ1 + [2z1ξ
2 + (1− ξ2)z2

2]τ 2
1 − z2τ

3
1 .

From integral representation (7.8), many useful formulae may be obtained. Here we give
only one of them, namely, asz1, z2→∞,

8m,n(z1, z2) ≈ Am,nzp1zq2 Am,n =
( 1

2)m(
1
2)n

(1)m(1)n

(1)m+n

( 3
2)m+n

. (7.14)

One can also show [38] that for arbitraryκ the analogous integral representation is valid

Fκ(z1, z2; t1, t2) =
∞∑

m,n=1

Am,n(κ)P
κ
m,n(z1, z2)t

m
1 t

n
2 =

∫ 1

0
[H ]−κ dµκ(ξ) (7.15)

whereH is given by (7.10),P κm,n(z1, z2) ∼ zm1 zn2 asz1, z2→∞, and

dµκ(ξ) = [ξ(1− ξ2)]2κ−1 Am,n(κ) = 1

2

0(κ)0(2κ)

0(3κ)

(κ)m(κ)n

(1)m(1)n

(2κ)m+n

(3κ)m+n
. (7.16)

Note that for the case under consideration another integral representation forN = 3 was
obtained in [31] in terms of3F 2 hypergeometric series.
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Appendix. Some formulae for Macdonald polynomials for theA2 case (by Perelomov,
Ragoucy and Zaugg)

Let us give first some necessary for us information. For other results and details, see [36].
The Macdonald polynomials of typeA2 may be defined as polynomial eigenfunctions of

the Macdonald difference equation

M1P (q,t)m,n (x1, x2, x3) = λP (q,t)m,n (x1, x2, x3) Pm,n = zm1 zn2 + lower terms
z1 = x1 + x2 + x3 z2 = x1x2 + x2x3 + x3x1 z3 = x1x2x3

(A.1)

where

M1 =
∏
j 6=k

(txj − xk)
(xj − xk) Tj T1f (x1, x2, x3) = f (qx1, x2, x3), . . . . (A.2)

The Macdonald polynomials satisfy the following recurrence relation:

z1P
(q,t)
m,n (z1, z2, z3) = P (q,t)m+1,n + am,n(q, t)P

(q,t)

m,n−1 + bm,n(q, t)P
(q,t)

m−1,n+1 (A.3)

where

amn = cnc̃m+n bmn = cm
cm(q, t) = (1− qm)(1− t2qm−1)

(1− tqm)(1− tqm−1)

c̃m+n(q, t) =
(

1− tqm+n

1− t2qm+n

)(
1− t3qm+n−1

1− t2qm+n−1

)
.

(A.4)

Note that

cm(q, 1) = cm(q, q) = 1 c̃m+n(q, 1) = c̃m+n(q, q) = 1. (A.5)

Now let us consider the caset = qk, k being an integer. In this case, the explicit expression
for the generating function of polynomialsP (k)n,0 ≡ P (q,t)n,0 has the form

G(k)(u) =
k−1∏
j=0

F 1(qju)

G(k)(u) =
∑

CknP
(k)
n,0u

n

Ckn =
[k]n
[1]n

[x]n = [x][x + 1] . . . [x + n− 1] [x] = 1− qx
1− x .

(A.6)

From this we get a three-term recurrence relation analogous to (5.7)

[n + 1]P̃ kn+1 = [k + n]z1P̃
k
n − [2k + n− 1]z2P̃

k
n−1 + [3k + n− 2]z3P̃

k
n−2 (A.7)

which follows from the recurrence relation

(1− z1u + z2u
2 − z3u

3)G(k)(u) = (1− z1uq
k + z2u

2q2k − z3u
3q3k)G(qu). (A.8)

From here, we obtain

P̃ κ0 = 1 P̃ κ1 = [κ]z1 P̃ κ2 =
[κ + 1][κ]

[1][2]
z2

1 −
[2κ]

[2]
z2, . . . P̃m,0 = [1]m

[κ]m
Pm,0.
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Let us also give the formula for the generating function for the case of arbitraryt :

G(q,t)(u) =
∞∏
j=0

(1− qj tu)
(1− qju) =

∞∑
j=0

cj (q, t) u
j . (A.9)

Using the results from the book [36], it is not difficult to get the formulae

P
(q,t)

m,0 P
(q,t)

0,n =
min(m,n)∑
i=0

γ im,nP
(q,t)

m−i,n−i (A.10)

where

γ im,n =
(t; q)i(qm; q−1)i(q

n; q−1)i(q
m+n−1−i t3; q−1)i

(q; q)i(qm−1t; q−1)i(qn−1t; q−1)i(qm+n−i t2; q−1)i
(A.11)

and

P
(q,t)

m,0 P
(q,t)

n,0 =
min(m,n)∑
i=0

γ̃ im,nP
(q,t)

m+n−2i,i (A.12)

where

γ̃ im,n =
(t; q)i(qm; q−1)i(q

n; q−1)i(q
m+n−i−1t2; q−1)i

(q; q)i(qm−1t; q−1)i(qn−1t; q−1)i(qm+n−i t; q−1)i
. (A.13)

Inverting formulae (A.10) and (A.11) as in [6], we arrive at the following theorem.

Theorem 1(a).The Macdonald polynomialsP (q,t)m,n of typeA2 are given by the formula

P (q,t)m,n =
min(m,n)∑
i=0

βim,nP
(q,t)

m−i,0P
(q,t)

0,n−i (A.14)

where constantsβim,n have the form

βim,n = (−1)iqi(i−1)/2 (t; q−1)i

(q; q)i
1− qm+n−2i t3

1− qm+n−i t3
(qm; q−1)i(q

n; q−1)i(q
m+n−1t3; q−1)i

(qm−1t; q−1)i(qn−1t; q−1)i(qm+n−1t2; q−1)i
.

In similar way, we get the following theorem.

Theorem 2(a).The Macdonald polynomialsP (q,t)m,n of typeA2 are given by the formula

γ̃ nm+n,nP
(q,t)
m,n =

n∑
i=0

β̃im,nP
(q,t)

m+n+i,0P
(q,t)

n−i,0 m > n (A.15)

where constants̃γ im,n are given by formula (A.13), and

β̃im,n = (−1)iqi(i−1)/2 (t; q−1)i

(q; q)i
(1− qm+2i )

(1− qm)
(qm; q)i(qn; q−1)i(q

m+nt; q)i
(qm+n+1; q)i(qm+1t; q)i(qn−1t; q−1)i

. (A.16)

From theorems 1(a) and 2(a), many interesting identities may be obtained. Here we give
one of them:

Skn,l =
l∑
i=0

(−1)iqi(i−1)/2 [3k + n− 2i]

[3k + n− i]
( i∏
j=1

[k − j + 1]

[j ]

[3k + n− j ]

[2k + n− j ]

)

×
( l−i−1∏

j=0

[k + j ]

[j + 1]

[3k + n− l − i − j − 1]

[2k + n− l − i − j ]

)
= 0 (A.17)

where [n] = (1− qn)/(1− q).
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The simplest version of this formula is

l∑
i=0

(−1)iqi(i−1)/2 [k + l − i − 1]!

[i]![ l − i]![ k − i]! = 0. (A.18)

We give below thelist of polynomialsP (q,t)m,n atm + n 6 4:

P
(q,t)

0,0 = 1 P
(q,t)

1,0 = z1 P
(q,t)

0,1 = z2

P
(q,t)

2,0 = z2
1 −

(1− q)(1 + t)

(1− qt) z2

P
(q,t)

1,1 = z1z2 − (1− q)(1 + t + t2)

(1− qt2) z3

P
(q,t)

3,0 = z3
1 −

(1− q)(2 +q + t + 2qt)

1− q2t
z1z2 +

(1− q)2(1 +q)(1 + t + t2)

(1− qt)(1− q2t)
z3

P
(q,t)

2,1 = z2
1z2 − (1− q)(1 + t)

1− qt z2
2 −

(1− q2)(1− qt3)
(1− qt)2(1 +qt)

z1z3

P
(q,t)

4,0 = z4
1 −

(1− q)(3 + 2q + q2 + t + 2qt + 3q2t)

1− q3t
z2

1z2

+
(1− q)2(1 +q + q2)(1 + t)(1 +qt)

(1− q2t)(1− q3t)
z2

2

+
(1− q)2(1 +q)(2 +q + q2 + t + 2qt + q2t + t2 + qt2 + 2q2t2)

(1− q2t)(1− q3t)
z1z3

P
(q,t)

3,1 = z3
1z2 − (1− q)(2 +q + t + 2qt)

1− q2t
z1z

2
2 −

(1− q3)(1− q2t3)

(1− q2t)(1− q3t2)
z2

1z3

+
(1− q)2

(1− q2t)(1− q3t2)
× (2 + 2q + q2 + 2t + 4qt + 3q2t + q3t + t2

+3qt2 + 4q2t2 + 2q3t2 + qt3 + 2q2t3 + 2q3t3)z2z3

P
(q,t)

2,2 = z2
1z

2
2 −

(1− q)(1 + t)

1− qt (z3
2 + z3

1z3)

− (1− q)(3q + q2 − 3t + 2q2t + q3t − t2 − 2qt2 + 3q3t2 − qt3− 3q2t3)

(1− qt)(1− q3t2)

×z1z2z3

+
(1− q)2(1 +q)(1 + t + t2)(q − t + q2t − qt2 + q3t2 − q2t3)

(1− qt)(1− q2t2)(1− q3t2)
z2

3.
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