Quantum integrable systems and Clebsch-Gordan series: II

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 328563
(http://iopscience.iop.org/0305-4470/32/48/315)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:51

Please note that terms and conditions apply.

Quantum integrable systems and Clebsch-Gordan series: II

A M Perelomov \dagger
Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn, Germany
E-mail: perelomo@posta.unizar.es

Received 11 August 1999

Abstract

The class of quantum integrable systems associated with root systems was introduced (Olshanetsky M A and Perelomov A M 1977 Lett. Math. Phys. 2 7-13) as a generalization of the Calogero-Sutherland systems (Calogero F 1971 J. Math. Phys. 12 419-36, Sutherland B 1972 Phys. Rev. A 4 2019-21). For the potential $v(q)=\kappa(\kappa-1) \sin ^{-2} q$, the wavefunctions of such systems are related to polynomials in l variables (l is a rank of the root system) and are a generalization of Gegenbauer polynomials and Jack polynomials (Jack H 1970 Proc. R. Soc. Edinburgh A 69 1-18). In Perelomov A M 1998 J. Phys. A: Math. Gen. 31 L31-7, it was proved that the series for the product of two such polynomials is a κ-deformation of the Clebsch-Gordan series. This yields recurrence relations for these polynomials and, in particular, for generalized zonal polynomials on symmetric spaces.

This paper follows my paper mentioned above and also Perelomov A M, Ragoucy E and Zaugg Ph 1998 J. Phys. A: Math. Gen. 31 L559-65. In the latter, the recurrence relations were used to compute the explicit expressions for A_{2}-type polynomials, i.e., for the wavefunctions of the three-body Calogero-Sutherland system.

As shown by Ragoucy, Zaugg and Perelomov (see the appendix), similar results are also valid in the A_{2} case for the more general two-parameter deformation ((q, t)-deformation) introduced by Macdonald (Macdonald I G 1988 Orthogonal polynomials associated with root systems Preprint).

1. Introduction

The class of quantum integrable systems associated with root systems was introduced in [1] (see also [8,9]) as a generalization of the Calogero-Sutherland systems [2,3]. Such systems depend on one real parameter κ (for root systems of the type A_{n}, D_{n} and E_{6}, E_{7}, E_{8}), on two parameters (for B_{n}, C_{n}, F_{4} and G_{2}) and on three parameters for the $B C_{n}$. These parameters are related to the coupling constants of the quantum system.

For the potential $v(q)=\kappa(\kappa-1) \sin ^{-2} q$ and special values of parameter κ, the wavefunctions correspond to the characters of the compact simple Lie groups $(\kappa=1)[10,11]$ or to zonal spherical functions on symmetric spaces $\left(\kappa=\frac{1}{2}, 2,4\right)$ [12, 13]. At arbitrary values of κ, they provide an interpolation between these objects.

This class has many remarkable properties. Here we mention only one: the wavefunctions of such systems are a natural generalization of special functions (hypergeometric functions) to the case of several variables. The history of this problem and some results may be found in [9]. In [5], it was shown that the product of two wavefunctions is a finite linear combination of analogous functions, namely, of functions that appear in the corresponding Clebsch-Gordan series. In other words, this deformation (κ-deformation) does not change the ClebschGordan series. For rank 1, we obtain the well known cases of the Legendre, Gegenbauer
\dagger On leave of absence from the Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia.
and Jacobi polynomials, and the limiting cases of the Laguerre and Hermite polynomials (see, for example, [14]). Some other cases were also considered in [4,7,15-32]. In [6], a κ-deformed Clebsch-Gordan series was used in order to obtain the explicit expressions for the generalized Gegenbauer polynomials \dagger of type A_{2} which is what gives the explicit solution of the threebody Calogero-Sutherland model. For special values of $\kappa=\frac{1}{2}, 2,4$, these formulae give the explicit expressions for zonal polynomials of type A_{2}.

In the appendix, analogous results obtained by Ragoucy, Zaugg and Perelomov for the twoparameter family of polynomials of type A_{2} introduced by Ruijsenaars [33] and Macdonald [7] are presented.

2. General description

The systems under consideration are described by the Hamiltonian (for more details, see [9])

$$
\begin{equation*}
H=\frac{1}{2} p^{2}+U(q) \quad p^{2}=(p, p)=\sum_{j=1}^{l} p_{j}^{2} \tag{2.1}
\end{equation*}
$$

where $p=\left(p_{1}, \ldots, p_{l}\right), p_{j}=-\mathrm{i} \partial / \partial q_{j}$, is a momentum operator, and $q=\left(q_{1}, \ldots, q_{l}\right)$ is a coordinate vector in the l-dimensional vector space $V \sim \mathbb{R}^{l}$ with standard scalar product (\cdot, \cdot). The potential $U(q)$ is constructed by means of a certain system of vectors $R^{+}=\{\alpha\}$ in V (the so-called root systems):

$$
\begin{gather*}
U=\sum_{\alpha \in R^{+}} g_{\alpha}^{2} v\left(q_{\alpha}\right) \quad q_{\alpha}=(\alpha, q) \quad g_{\alpha}^{2}=\kappa_{\alpha}\left(\kappa_{\alpha}-1\right) \quad g_{\alpha}=g_{\beta} \\
\text { if } \quad(\alpha, \alpha)=(\beta, \beta) \tag{2.2}
\end{gather*}
$$

Such systems are completely integrable for potentials of five types (see [9] for $A_{l} ;[24-27,29]$ for a general case). They are a generalization of the Calogero-Sutherland systems [2,3] for which $\{\alpha\}=\left\{e_{i}-e_{j}\right\},\left\{e_{j}\right\}$ being a standard basis in V.

In this paper, we consider in detail only the case of A_{2} with potential $v(q)=\sin ^{-2} q$.

3. Root systems

We give here only basic definitions. For more details, see [7, 34, 35].
Let V be a l-dimensional real vector space with a standard scalar product $(\cdot, \cdot),(\alpha, \beta)=$ $\sum \alpha_{j} \beta_{j}$, and let s_{α} be a reflection in the hyperplane through the origin orthogonal to the vector α,

$$
\begin{equation*}
s_{\alpha} q=q-\left(q, \alpha^{\vee}\right) \alpha \quad \alpha^{\vee}=\frac{2}{(\alpha, \alpha)} \alpha \tag{3.1}
\end{equation*}
$$

Consider a finite set of non-zero vectors $R=\{\alpha\}$ generating V and satisfying the following conditions:
(1) For any $\alpha \in R$, the reflection s_{α} conserves $R: s_{\alpha} R=R$.
(2) For all $\alpha, \beta \in R$, we have $\left(\alpha^{\vee}, \beta\right) \in \mathbb{Z}$.

The set $\left\{s_{\alpha}\right\}$ generates the finite group $W(R)$ which is called the Weyl group of R. The root system R is called a reduced one only if $\pm \alpha$ are vectors collinear to α in R.

Let us choose the hyperplane which does not contain any root. This hyperplane divides the root system into two subsets, $R=R^{+} \bigcup R^{-}$, where R^{+}is called the set of positive roots.
\dagger In some papers, the name Jack polynomials [4] is used. However, Jack polynomials are a very special case of the polynomials under consideration. Therefore, we prefer to use the name generalized Gegenbauer polynomials for the general case and Jack polynomials for the special case.

In R^{+}, there is the basis $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ such that $\alpha=\sum_{j} n_{j} \alpha_{j}, n_{j} \geqslant 0$, for any $\alpha \in R^{+}$. This is called the set of simple roots. The root system R is called irreducible if it cannot decompose into two non-empty subsets R_{1} and R_{2} which are orthogonal to each other.

Let $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be the set of simple roots, let R^{+}be the set of positive roots, and $\left\{\lambda_{j}\right\}$ be a dual basis or the basis of fundamental weights: $\left(\lambda_{j}, \alpha_{k}\right)=\delta_{j k}$.

Let Q be the root lattice, and Q^{+}be the cone of positive roots:
$Q=\left\{\beta: \beta=\sum_{j=1}^{l} m_{j} \alpha_{j}, m_{j} \in \mathbb{Z}\right\} \quad Q^{+}=\left\{\gamma: \gamma=\sum_{j=1}^{l} n_{j} \alpha_{j}, n_{j} \in \mathbb{N}\right\}$.
Let P be a weight lattice, and P^{+}be a cone of dominant weights:
$P=\left\{\lambda: \lambda=\sum_{j=1}^{l} m_{j} \lambda_{j}, m_{j} \in \mathbb{Z}\right\} \quad P^{+}=\left\{\mu: \mu=\sum_{j=1}^{l} n_{j} \lambda_{j}, n_{j} \in \mathbb{N}\right\}$.
Following [7,18], we define a partial order on P as follows: $\lambda \geqslant \mu$ if and only if $\lambda-\mu \in Q^{+}$, or $\left(\lambda, \lambda_{j}\right) \geqslant\left(\mu, \lambda_{j}\right)$ for all $j=1, \ldots, l$. The set of linear combinations over \mathbb{R} of functions $f_{\lambda}(q)=\exp \{2 \mathrm{i}(\lambda, q)\}, \lambda \in P, q \in V$, may be considered as the group algebra A over \mathbb{R} of the free Abelian group P. For any $\lambda \in P$, we denote the corresponding element of A as $\mathrm{e}^{\lambda} \sim f_{\lambda}(q)$. So, $\mathrm{e}^{\lambda} \mathrm{e}^{\mu}=\mathrm{e}^{\lambda+\mu},\left(\mathrm{e}^{\lambda}\right)^{-1}=\mathrm{e}^{-\lambda}$, and the identity element of A as $\mathrm{e}^{0}=1$. Then $\mathrm{e}^{\lambda}, \lambda \in P$, form an \mathbb{R}-basis of A.

The Weyl group $W(R)$ acts on P and hence also on $A: s\left(\mathrm{e}^{\lambda}\right)=\mathrm{e}^{s \lambda}$ for $s \in W$ and $\lambda \in P$. Let A^{W} denotes the subalgebra of W-invariant elements of A. It is evident that each W-orbit in P contains only one point in P^{+}. Consequently, the monomial symmetric functions

$$
\begin{equation*}
m_{\lambda}=\sum_{\mu \in W \cdot \lambda} \mathrm{e}^{\mu} \quad \lambda \in P^{+} \tag{3.4}
\end{equation*}
$$

form the \mathbb{R}-basis of A^{W}.

4. The Clebsch-Gordan series

Let us recall the main results of [5] and specialize them to the A_{2} case with potential $v(q)=\sin ^{-2} q$.

The Schrödinger equation for this quantum system has the form
$H \Psi^{\kappa}=E(\kappa) \Psi^{\kappa} \quad H=-\Delta_{2}+U\left(q_{1}, q_{2}, q_{3}\right) \quad \Delta_{2}=\sum_{j=1}^{3} \frac{\partial^{2}}{\partial q_{j}^{2}}$
with potential
$U\left(q_{1}, q_{2}, q_{3}\right)=\kappa(\kappa-1)\left(\sin ^{-2}\left(q_{1}-q_{2}\right)+\sin ^{-2}\left(q_{2}-q_{3}\right)+\sin ^{-2}\left(q_{3}-q_{1}\right)\right)$.
The ground state wavefunction and its energy are

$$
\begin{equation*}
\Psi_{0}^{\kappa}(q)=\left(\prod_{j<k}^{3} \sin \left(q_{j}-q_{k}\right)\right)^{\kappa} \quad E_{0}(\kappa)=8 \kappa^{2} \tag{4.3}
\end{equation*}
$$

Substituting $\Psi_{\lambda}^{\kappa}=\Phi_{\lambda}^{\kappa} \Psi_{0}^{\kappa}$ in (4.1), we obtain
$-\Delta^{\kappa} \Phi_{\lambda}^{\kappa}=\varepsilon_{\lambda}(\kappa) \Phi_{\lambda}^{\kappa} \quad \Delta^{\kappa}=\Delta_{2}+\Delta_{1}^{\kappa} \quad \varepsilon_{\lambda}(\kappa)=E_{\lambda}(\kappa)-E_{0}(\kappa)$.
Here the operator Δ_{1}^{κ} takes the form

$$
\begin{equation*}
\Delta_{1}^{\kappa}=\kappa \sum_{j<k}^{3} \cot \left(q_{j}-q_{k}\right)\left(\frac{\partial}{\partial q_{j}}-\frac{\partial}{\partial q_{k}}\right) . \tag{4.5}
\end{equation*}
$$

It is easy to see that the set of symmetric polynomials in variables $\exp \left(2 \mathrm{i} q_{j}\right)$ is invariant under the action of Δ^{κ}. Such polynomial m_{λ} is labelled by the $S U(3)$ highest weight $\lambda=m \lambda_{1}+n \lambda_{2}$, with m, n being non-negative integers, and $\lambda_{1,2}$ being two fundamental weights. In general,

$$
\begin{equation*}
\Phi_{\lambda}^{\kappa}=\sum_{\mu \leqslant \lambda} C_{\lambda}^{\mu}(\kappa) m_{\mu} \quad \mu, \lambda \in P^{+} \quad m_{\mu}=\sum_{\nu \in W \cdot \mu} \mathrm{e}^{2 \mathrm{i}(q, v)} \tag{4.6}
\end{equation*}
$$

where P^{+}denotes the cone of dominant weights, W is the Weyl group, and $C_{\lambda}^{\mu}(\kappa)$ are some constants.

As was shown in [5], the product of two wavefunctions is a finite sum of wavefunctions (a sort of κ-deformed Clebsch-Gordan series):

$$
\begin{equation*}
\Phi_{\mu}^{\kappa} \Phi_{\lambda}^{\kappa}=\sum_{v \in D_{\mu}(\lambda)} C_{\mu \lambda}^{v}(\kappa) \Phi_{v}^{\kappa} . \tag{4.7}
\end{equation*}
$$

In this equation, $D_{\mu}(\lambda)=\left(D_{\mu}+\lambda\right) \cap P^{+}$, where D_{μ} is a weight diagram of the representation with the highest weight μ.

Since Φ_{μ}^{κ} are symmetric functions of $\exp \left(2 \mathrm{i} q_{j}\right)$, it is convenient to use a new set of variables:

$$
\begin{align*}
& z_{1}=\mathrm{e}^{2 \mathrm{i} q_{1}}+\mathrm{e}^{2 \mathrm{i} q_{2}}+\mathrm{e}^{2 \mathrm{i} q_{3}} \\
& z_{2}=\mathrm{e}^{2 \mathrm{i}\left(q_{1}+q_{2}\right)}+\mathrm{e}^{2 \mathrm{i}\left(q_{2}+q_{3}\right)}+\mathrm{e}^{2 \mathrm{i}\left(q_{3}+q_{1}\right)} \tag{4.8}\\
& z_{3}=\mathrm{e}^{2 \mathrm{i}\left(q_{1}+q_{2}+q_{3}\right)} .
\end{align*}
$$

In the centre-of-mass frame $\left(\sum_{i} q_{i}=0\right)$, the wavefunctions depend only on two variables chosen as z_{1} and z_{2} (in this case, $z_{3}=1$). In these variables, up to a normalization factor, we have

$$
\begin{equation*}
\Delta^{\kappa}=\left(z_{1}^{2}-3 z_{2}\right) \partial_{1}^{2}+\left(z_{2}^{2}-3 z_{1}\right) \partial_{2}^{2}+\left(z_{1} z_{2}-9\right) \partial_{1} \partial_{2}+(3 \kappa+1)\left(z_{1} \partial_{1}+z_{2} \partial_{2}\right) \tag{4.9}
\end{equation*}
$$

where $\partial_{i}=\partial / \partial z_{i}$. Corresponding eigenvalues are

$$
\begin{equation*}
\varepsilon_{m, n}(\kappa)=m^{2}+n^{2}+m n+3 \kappa(m+n) . \tag{4.10}
\end{equation*}
$$

We shall use the normalization for polynomials Φ_{λ}^{κ} such that the coefficient at the highest monomial is equal to one. Denoting them by $P_{m, n}^{\kappa}$, we have

$$
\begin{equation*}
P_{m, n}^{\kappa}\left(z_{1}, z_{2}\right)=\sum_{p, q} C_{m, n}^{p, q}(\kappa) z_{1}^{p} z_{2}^{q}=z_{1}^{m} z_{2}^{n}+\text { lower terms } \tag{4.11}
\end{equation*}
$$

with $p+q \geqslant m+n$ and $p-q \equiv m-n(\bmod 3)$. As it is easy to see, the first polynomials are

$$
\begin{equation*}
P_{0,0}^{\kappa}=1 \quad P_{1,0}^{\kappa}=z_{1} \quad P_{0,1}^{\kappa}=z_{2} \tag{4.12}
\end{equation*}
$$

Simple consequences of (4.7) for $P_{\lambda}^{\kappa}=P_{1,0}^{\kappa}$ or $P_{0,1}^{\kappa}$ are [5]

$$
\begin{align*}
& z_{1} P_{m, n}^{\kappa}=P_{m+1, n}^{\kappa}+a_{m, n}(\kappa) P_{m, n-1}^{\kappa}+c_{m}(\kappa) P_{m-1, n+1}^{\kappa} \tag{4.13}\\
& z_{2} P_{m, n}^{\kappa}=P_{m, n+1}^{\kappa}+\tilde{a}_{m, n}(\kappa) P_{m-1, n}^{\kappa}+c_{n}(\kappa) P_{m+1, n-1}^{\kappa}
\end{align*}
$$

where

$$
\begin{align*}
& a_{m, n}(\kappa)=\tilde{a}_{n, m}(\kappa)=c_{n}(\kappa) c_{m+n+\kappa}(\kappa) \\
& c_{m}(\kappa)=\frac{e(m)}{e(\kappa+m)} \quad e(m)=\frac{m}{m-1+\kappa} . \tag{4.14}
\end{align*}
$$

Below we shall construct such polynomials using these recurrence relations.

5. A_{2} case

Now we proceed to the case of $A_{2} \sim s u(3)$. In this case, the representation d of A_{2} is characterized by two non-negative numbers $d=d_{m n}$.

We start with the Clebsch-Gordan series

$$
\begin{align*}
& d_{10} \otimes d_{n+1,0}=d_{n+2,0} \oplus d_{n, 1} \tag{5.1}\\
& d_{01} \otimes d_{n 0}=d_{n, 1} \oplus d_{n-1,0}
\end{align*}
$$

Excluding $d_{n, 1}$, we obtain

$$
d_{n-1,0} \ominus\left(d_{01} \otimes d_{n 0}\right) \oplus\left(d_{10} \otimes d_{n+1,0}\right) \ominus d_{n+2,0}=0
$$

or

$$
\begin{equation*}
\chi_{n-1,0}-z_{2} \chi_{n, 0}+z_{1} \chi_{n+1,0}-\chi_{n+2,0}=0 \tag{5.2}
\end{equation*}
$$

where the following notations are introduced:

$$
\begin{align*}
& z_{1}=\chi_{10}=\mathrm{e}^{\mathrm{i} \theta_{1}}+\mathrm{e}^{\mathrm{i} \theta_{2}}+\mathrm{e}^{\mathrm{i} \theta_{3}}, \tag{5.3}\\
& z_{2}=\chi_{01}=\mathrm{e}^{-\mathrm{i} \theta_{1}}+\mathrm{e}^{-\mathrm{i} \theta_{2}}+\mathrm{e}^{-\mathrm{i} \theta_{3}} .
\end{align*}
$$

From this, we obtain the expression for the generating function

$$
\begin{align*}
& F_{0}^{1}\left(z_{1}, z_{2} ; u\right)=\sum_{n=0}^{\infty} \chi_{n 0}\left(z_{1}, z_{2}\right) u^{n} \tag{5.4}\\
& F_{0}^{1}\left(z_{1}, z_{2} ; u\right)=\left(1-z_{1} u+z_{2} u^{2}-u^{3}\right)^{-1} .
\end{align*}
$$

Let us define now the κ-deformed functions $\tilde{P}_{n, 0}^{\kappa}\left(z_{1}, z_{2}\right)$ by the formula

$$
\begin{equation*}
F^{\kappa}\left(z_{1}, z_{2} ; u\right)=\left(1-z_{1} u+z_{2} u^{2}-u^{3}\right)^{-\kappa}=\sum_{n=0}^{\infty} \tilde{P}_{n, 0}^{\kappa}\left(z_{1}, z_{2}\right) u^{n} . \tag{5.5}
\end{equation*}
$$

Analogously to A_{1} case, we may obtain all other formulae from this one.
Differentiating F^{κ} on u, z_{1} and z_{2}, we get

$$
\begin{aligned}
& F_{u}^{\kappa}=\kappa\left(z_{1}-2 z_{2} u+3 u^{2}\right) F^{\kappa+1} \\
& F_{z_{1}, z_{1}}^{\kappa}=\kappa(\kappa+1) u^{2} F^{\kappa+2} \\
& F_{z_{1}, z_{2}}^{\kappa}=-\kappa(\kappa+1) u^{3} F^{\kappa+2} \\
& F_{z_{2}, z_{2}}^{\kappa}=\kappa(\kappa+1) u^{4} F^{\kappa+2} \\
& u F_{u}^{\kappa}=\kappa\left(z_{1} u-2 z_{2} u^{2}+3 u^{3}\right) F^{\kappa+1}
\end{aligned}
$$

and

$$
\begin{gathered}
D_{u}^{2} F^{\kappa}=\left\{\kappa\left(z_{1} u-4 z_{2} u^{2}+9 u^{3}\right)\left(1-z_{1} u+z_{2} u^{2}-u^{3}\right)\right. \\
\left.+\kappa(\kappa+1)\left(z_{1} u-2 z_{2} u^{2}+3 u^{3}\right)^{2}\right\} F^{\kappa+2}
\end{gathered}
$$

$D_{u}=u \partial_{u}$
or
$\left(1-z_{1} u+z_{2} u^{2}-u^{3}\right) F_{u}^{\kappa}=\kappa\left(z_{1}-2 z_{2} u+3 u^{2}\right) F^{\kappa}$
$(n+3) \tilde{P}_{n+3}^{\kappa}-z_{1}(n+2) \tilde{P}_{n+2}^{\kappa}+z_{2}(n+1) \tilde{P}_{n+1}^{\kappa}-n \tilde{P}_{n}^{\kappa}=\kappa z_{1} \tilde{P}_{n+2}^{\kappa}-2 \kappa z_{2} \tilde{P}_{n+1}^{\kappa}+3 \kappa \tilde{P}_{n}^{\kappa}$.
So, we obtain the important recurrence formula
$(n+3) \tilde{P}_{n+3,0}^{\kappa}=(n+2+\kappa) z_{1} \tilde{P}_{n+2,0}^{\kappa}-(n+1+2 \kappa) z_{2} \tilde{P}_{n+1,0}^{\kappa}+(n+3 \kappa) \tilde{P}_{n, 0}$.
Now let us differentiate F^{κ} on z_{1}. We have

$$
\begin{equation*}
F_{z_{1}}^{\kappa}=\kappa u F^{\kappa+1} \tag{5.8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\partial_{z_{1}} P_{n, 0}^{\kappa}=n P_{n-1,0}^{\kappa+1} . \tag{5.9}
\end{equation*}
$$

Analogously,

$$
\begin{equation*}
F_{z_{2}}^{\kappa}=-\kappa u^{2} F^{\kappa+1} . \tag{5.10}
\end{equation*}
$$

Therefore,

$$
\partial_{z_{2}} P_{n, 0}^{\kappa}=-\frac{n(n-1)}{\kappa+n-1} P_{n-2,0}^{\kappa+1} .
$$

Finally, we have the basic differential equation for $F^{\kappa}\left(z_{1}, z_{2} ; u\right)$:

$$
\begin{aligned}
\left(\left(D_{z_{1}}^{2}+D_{z_{2}}^{2}\right.\right. & \left.\left.+D_{z_{1}} D_{z_{2}}\right)-3 z_{2} \partial_{z_{1}}^{2}-3 z_{1} \partial_{z_{2}}^{2}-9 \partial_{z_{1}} \partial_{z_{2}}+3 \kappa\left(D_{z_{1}}+D_{z_{2}}\right)\right) F^{\kappa} \\
& =\left(D_{u}^{2}+3 \kappa D_{u}\right) F^{\kappa}\left(z_{1}, z_{2} ; u\right) \quad D_{z_{1}}=z_{1} \partial_{z_{1}} \quad D_{z_{2}}=z_{2} \partial z_{2} \quad D_{u}=u \partial_{u} .
\end{aligned}
$$

Let us note that the normalization of polynomials $\tilde{P}_{n, 0}^{\kappa}\left(z_{1}, z_{2}\right)$ follows from the expression (5.5) for the generating function. Namely,

$$
\begin{equation*}
\tilde{P}_{n 0}^{\kappa}\left(z_{1}, z_{2}\right)=\frac{(\kappa)_{n}}{n!} z_{1}^{n}+\cdots=\frac{(\kappa)_{n}}{n!} P_{n, 0}^{\kappa}\left(z_{1}, z_{2}\right) \tag{5.11}
\end{equation*}
$$

where

$$
(\kappa)_{n}=(\kappa)(\kappa+1) \ldots(\kappa+n-1) .
$$

The main property of this normalization is that $\tilde{P}_{n, 0}^{\kappa}\left(z_{1}, z_{2}\right)$ has a polynomial dependence on the parameter κ.

Now we shall consider other Clebsch-Gordan series for $\kappa=1$:

$$
d_{1,0} \otimes d_{n+1,0}=d_{n+2,0} \oplus d_{n, 1} .
$$

According to [5], the analogous formula is valid for an arbitrary value of κ, i.e.,

$$
\begin{equation*}
a_{n} z_{1} \tilde{P}_{n+1,0}^{\kappa}=b_{n} \tilde{P}_{n+2,0}^{\kappa}+c_{n} \tilde{P}_{n, 1}^{\kappa} \tag{5.12}
\end{equation*}
$$

where coefficients a_{n}, b_{n} and c_{n} do not depend on z_{1} and z_{2} but may depend on κ. Comparing coefficients at z_{1}^{n+2} yields

$$
a_{n}=\kappa+n+1 \quad b_{n}=n+2 .
$$

From this relation, we may determine the function $\tilde{P}_{n, 1}$ up to the normalizing constant c_{n} :

$$
\begin{equation*}
c_{n}(\kappa) \tilde{P}_{n, 1}^{\kappa}=(\kappa+n+1) z_{1} \tilde{P}_{n+1,0}^{\kappa}-(n+2) \tilde{P}_{n+2,0}^{\kappa} . \tag{5.13}
\end{equation*}
$$

Let us now calculate the generating function for both left- and right-hand sides of this equation,

$$
\begin{align*}
G^{\kappa} & =\sum_{n=0}^{\infty} c_{n}(\kappa) \tilde{P}_{n, 1}^{\kappa}\left(z_{1}, z_{2}\right) \tag{5.14}\\
G^{\kappa} & =\frac{\kappa z_{1}}{u}\left(F_{0}^{\kappa}-1\right)+\frac{z_{1}}{u} F_{1}^{\kappa}-\frac{1}{u^{2}}\left(F_{1}^{\kappa}-\kappa z_{1} u\right)
\end{align*}
$$

where

$$
F_{0}^{\kappa}=\sum_{n=0}^{\infty} \tilde{P}_{n, 0}^{\kappa} u^{n} \quad F_{1}^{\kappa}=\sum_{n=0}^{\infty} n \tilde{P}_{n, 0}^{\kappa} u^{n}=D_{u} F_{0}^{\kappa}
$$

and

$$
G^{\kappa}=\frac{1}{u^{2}}\left(\kappa z_{1} u-\left(1-z_{1} u\right) D_{u}\right) F_{0}^{\kappa} .
$$

Finally,

$$
\begin{equation*}
G^{\kappa}=\kappa\left(2 z_{2}-\left(z_{1} z_{2}+3\right) u+2 z_{1} u^{2}\right) F_{0}^{\kappa+1} \tag{5.15}
\end{equation*}
$$

From this, follows the three-term recurrence relation

$$
\tilde{P}_{n, 1}^{\kappa}=\kappa\left(2 z_{2} \tilde{P}_{n, 0}^{\kappa+1}-\left(z_{1} z_{2}+3\right) \tilde{P}_{n-1,0}^{\kappa+1}+2 z_{1} \tilde{P}_{n-2,0}^{\kappa+1}\right) .
$$

Let us give also the explicit expression for $\tilde{P}_{n, 0}^{\kappa}\left(z_{1}, z_{2}\right)$ and $\tilde{P}_{n, 1}^{\kappa}\left(z_{1}, z_{2}\right)$ in other variables

$$
\begin{aligned}
& z_{1}=\mathrm{e}^{\mathrm{i} \theta_{1}}+\mathrm{e}^{\mathrm{i} \theta_{2}}+\mathrm{e}^{\mathrm{i} \theta_{3}}=x_{1}+x_{2}+x_{3} \\
& z_{2}=\mathrm{e}^{-\mathrm{i} \theta_{1}}+\mathrm{e}^{-\mathrm{i} \theta_{2}}+\mathrm{e}^{-\mathrm{i} \theta_{3}}=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}
\end{aligned}
$$

As was shown in [22],

$$
\begin{equation*}
\tilde{P}_{n, 0}^{\kappa}=\sum_{m_{1}, m_{2}, m_{3}} C_{m_{1}, m_{2}, m_{3}}^{n, 0}(\kappa) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} \quad m_{1}+m_{2}+m_{3}=n \quad x_{1} x_{2} x_{3}=1 \tag{5.16}
\end{equation*}
$$

where quantities $C_{m_{1}, m_{2}, m_{3}}^{n, 0}(\kappa)$ are κ-deformed three-nomial coefficients

$$
\begin{equation*}
C_{m_{1}, m_{2}, m_{3}}^{n, 0}(\kappa)=\frac{n!}{m_{1}!m_{2}!m_{3}!} \frac{(\kappa)_{m_{1}}(\kappa)_{m_{2}}(\kappa)_{m_{3}}}{(\kappa)_{n}} \tag{5.17}
\end{equation*}
$$

The function $\tilde{P}_{n, 1}^{\kappa}$ may be defined by the formula

$$
\begin{align*}
& \tilde{P}_{n-2,1}^{\kappa}\left(z_{1}, z_{2}\right)=z_{1} \tilde{P}_{n-1,0}^{\kappa}-\tilde{P}_{n, 0} \\
& \tilde{P}_{n-2,1}^{\kappa}\left(z_{1}, z_{2}\right)=\sum_{m_{1}, m_{2}, m_{3}}^{n, m_{m_{1}}, m_{2}, m_{3}}(\kappa) x_{1}^{m_{1}} x_{2}^{m_{2}} x_{3}^{m_{3}} \tag{5.18}
\end{align*}
$$

We obtain
$C_{m_{1}, m_{2}, m_{3}}^{n, 1}(\kappa)=C_{m_{1}-1, m_{2}, m_{3}}^{n-1,0}(\kappa)+C_{m_{1}, m_{2}-1, m_{3}}^{n-1,0}(\kappa)+C_{m_{1}, m_{2}, m_{3}-1}^{n-1,0}-C_{m_{1}, m_{2}, m_{3}}^{n, 0}(\kappa)$.
Substituting the explicit expression for $C_{m_{1}, m_{2}, m_{3}}^{n, 0}(\kappa)$, we get

$$
\begin{equation*}
C_{m_{1}, m_{2}, m_{3}}^{n, 1}(\kappa)=C_{m_{1}, m_{2}, m_{3}}^{n, 0}(\kappa) S_{m_{1}, m_{2}, m_{3}}^{n, 1} \tag{5.20}
\end{equation*}
$$

where
$S_{m_{1}, m_{2}, m_{3}}^{n, 1}=\frac{\kappa-1+n}{n}\left(\frac{m_{1}}{\kappa-1+m_{1}}+\frac{m_{2}}{\kappa-1+m_{2}}+\frac{m_{3}}{\kappa-1+m_{3}}-\frac{n}{\kappa-1+n}\right)$.
At $\kappa=1$, the quantity $S_{m_{1}, m_{2}, m_{3}}^{n, 1}(\kappa)$ is equal to two. As $\kappa \rightarrow \infty$, it has an order κ^{-1} and is a symmetric function of m_{1}, m_{2}, m_{3}. So, it should have a form

$$
\begin{equation*}
S_{m_{1}, m_{2}, m_{3}}^{n, 1}=\frac{\alpha(\kappa-1)^{2}+\beta(\kappa-1)+\gamma}{\left(\kappa-1+m_{1}\right)\left(\kappa-1+m_{2}\right)\left(\kappa-1+m_{3}\right)} . \tag{5.22}
\end{equation*}
$$

Now let us follow [6] and construct the general polynomials in terms of the simplest polynomials (Jack polynomials) $P_{m, 0}^{\kappa}$ and $P_{0, n}^{\kappa}$. We get

$$
\begin{equation*}
P_{m, 0}^{\kappa} P_{0, n}^{\kappa}=\sum_{i=0}^{\min (m, n)} \gamma_{m, n}^{i} P_{m-i, n-i}^{\kappa} \tag{5.23}
\end{equation*}
$$

where $\gamma_{m, n}^{i}$ are given by the explicit expression \dagger

$$
\begin{equation*}
\gamma_{m, n}^{i}=\frac{(\kappa)^{i}(m)_{i}(n)_{i}(3 \kappa+m+n-1-i)_{i}}{i!(\kappa+m-1)_{i}(\kappa+n-1)_{i}(2 \kappa+m+n-i)_{i}} \tag{5.24}
\end{equation*}
$$

where

$$
\begin{align*}
(x)^{i} & =x(x+1) \ldots(x+i-1) \tag{5.25}\\
(x)_{i} & =x(x-1) \ldots(x-i+1)
\end{align*}
$$

The constructive aspect of this formula is in its inverted form.
\dagger Note that this expression for $\gamma_{m, n}^{i}$ may be obtained from the general Macdonald formula [36]; however, the method of proof given in [6] is more convenient here.

Theorem 1 ([6]). The generalized Gegenbauer polynomials $P_{m, n}^{\kappa}$ of type A_{2} are given by the formula

$$
\begin{equation*}
P_{m, n}^{\kappa}=\sum_{i=0}^{\min (m, n)} \beta_{m, n}^{i} P_{m-i, 0}^{\kappa} P_{0, n-i}^{\kappa} \tag{5.26}
\end{equation*}
$$

where the constants $\beta_{m, n}^{i}$ are
$\beta_{m, n}^{i}=\frac{(-1)^{i}}{i!} \frac{3 \kappa+m+n-2 i}{3 \kappa+m+n-i} \frac{(m)_{i}(n)_{i}(\kappa)_{i}(3 \kappa+m+n-1)_{i}}{(\kappa+m-1)_{i}(\kappa+n-1)_{i}(2 \kappa+m+n-1)_{i}}$.
Note that $\beta_{m, n}^{i}$ are obtained by use of the relation

$$
\begin{equation*}
\beta_{m, n}^{i}=-\sum_{j=0}^{i-1} \beta_{m, n}^{j} \gamma_{m-j, n-j}^{i-j} \tag{5.28}
\end{equation*}
$$

From this theorem, we see that the construction of a general polynomial $P_{m, n}^{\kappa}$ is similar to the construction of $S U(3)$ representations from tensor products of two fundamental representations.

Likewise, we can consider other types of decompositions, such as

$$
\begin{equation*}
P_{m, 0}^{\kappa} P_{n, 0}^{\kappa}=\sum_{i=0}^{\min (m, n)} \tilde{\gamma}_{m, n}^{i} P_{m+n-2 i, i}^{\kappa} \tag{5.29}
\end{equation*}
$$

The proof is analogous to (5.23) (see the footnote on page 7). The coefficients $\tilde{\gamma}_{m, n}^{i}$ are given by the formula

$$
\begin{equation*}
\tilde{\gamma}_{m, n}^{i}=\frac{(\kappa)^{i}(m)_{i}(n)_{i}(2 \kappa+m+n-1-i)_{i}}{i!(\kappa+m-1)_{i}(\kappa+n-1)_{i}(\kappa+m+n-i)_{i}} . \tag{5.30}
\end{equation*}
$$

Theorem 2 ([6]). There is another formula for polynomials $P_{m, n}^{\kappa}$ at $m \geqslant n$:

$$
\begin{equation*}
\tilde{\gamma}_{m+n, n}^{n} P_{m, n}^{\kappa}=\sum_{i=0}^{n} \tilde{\beta}_{m, n}^{i} P_{m+n+i, 0}^{\kappa} P_{n-i, 0}^{\kappa} \tag{5.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\beta}_{m, n}^{i}=\frac{(-1)^{i}}{i!}(\kappa)_{i} \frac{(m+2 i)}{m} \frac{(\kappa+m+n)^{i}}{(m+n+1)^{i}} \frac{(m)^{i}}{(\kappa+m+1)^{i}} \frac{(n)_{i}}{(\kappa+n-1)_{i}} . \tag{5.32}
\end{equation*}
$$

This theorem follows directly from equation (5.29). The coefficients $\tilde{\beta}_{m, n}^{i}$ are found by use of the relation

$$
\begin{equation*}
\tilde{\beta}_{m, n}^{i}=-\left(\tilde{\gamma}_{m+n+i, n-i}^{n-i}\right)^{-1} \sum_{j=0}^{i-1} \tilde{\beta}_{m, n}^{j} \tilde{\gamma}_{m+n+j, n-j}^{n-i} \tag{5.33}
\end{equation*}
$$

As a by-product, let us specialize equation (5.26) to the case $\kappa=1$, where $P_{m, n}^{\kappa}$ are nothing but the $S U(3)$ characters. We get

$$
\begin{equation*}
P_{m, n}^{1}=P_{m, 0}^{1} P_{0, n}^{1}-P_{m-1,0}^{1} P_{0, n-1}^{1} . \tag{5.34}
\end{equation*}
$$

From this, we easily deduce the generating function for $S U(3)$ characters (see, for example, [37])
$G^{1}(u, v)=\sum_{m, n=0}^{\infty} u^{m} v^{n} P_{m, n}^{1}=\frac{1-u v}{\left(1-z_{1} u+z_{2} u^{2}-u^{3}\right)\left(1-z_{2} v+z_{1} v^{2}-v^{3}\right)}$.

6. The integral representation for the case of $N=3$

The integral representation for the case of $N=2$ coincides with the integral representation for the Gegenbauer polynomials and is well known (see, for example, [14]).

For the special values of $\kappa\left(\kappa=\frac{1}{2}, 1,2,4\right)$, wavefunctions are related to zonal spherical functions. The integral representation of these functions was obtained by Harish-Chandra by integrating on the some Lie group $K[12,13]$.

Following [32] let us now consider the A_{2} case $(N=3)$ for $\kappa=\frac{1}{2}, K=S O(3, \mathbb{R})$. The element $k \in K=S O(3, \mathbb{R})$ may be represented by three unit vectors orthogonal to each other

$$
n, l, m \quad n^{2}=l^{2}=m^{2}=1 \quad(n, l)=(l, m)=(m, n)=0 .
$$

Here the integral representation for zonal spherical polynomials has the form

$$
\begin{equation*}
\Phi_{p q}(x)=\int_{K}\left[\Xi_{1}\left(x_{j} ; n\right)\right]^{p}\left[\Xi_{2}\left(x_{j} ; n, l\right)\right]^{q} \mathrm{~d} \mu(n, l) \quad x_{j}=\mathrm{e}^{\mathrm{i} q_{j}} \tag{6.1}
\end{equation*}
$$

where

$$
\Xi_{1}\left(x_{j} ; n\right)=n_{1}^{2} x_{1}+n_{2}^{2} x_{2}+n_{3}^{2} x_{3} \quad \Xi_{2}\left(x_{j} ; n, l\right)=\sum_{j<k}\left(n_{j} l_{k}-n_{k} l_{j}\right)^{2} x_{j} x_{k}
$$

and the integration is taken on the orthogonal group $K=S O(3, \mathbb{R})$, which is equivalent to the space of two unit orthogonal vectors n and l.

Noting that $m_{k}=\epsilon_{k i j} n_{i} l_{j}$, we also have $x_{1} x_{2}=x_{3}^{-1}, \ldots$ Hence $\Phi_{p q}$ is given by (6.1) where

$$
\begin{equation*}
\Xi_{2}\left(x_{j} ; n, l\right)=m_{1}^{2} x_{1}^{-1}+m_{2} x_{2}^{-1}+m_{3} x_{3}^{-1} . \tag{6.2}
\end{equation*}
$$

For vectors n and m, the standard parametrization through the Euler angles φ, θ and ψ may be used:

$$
\begin{align*}
& n=(\cos \varphi \sin \theta, \sin \varphi \sin \theta, \cos \theta) \quad m=\cos \psi \cdot a+\sin \psi \cdot b \\
& a=(-\sin \varphi, \cos \varphi, 0) \quad b=(-\cos \varphi \cos \theta,-\sin \varphi \cos \theta, \sin \theta) \tag{6.3}
\end{align*}
$$

with $\mathrm{d} \mu(k)=\mathrm{d} \mu(n, m)=A \sin \theta \mathrm{~d} \theta \mathrm{~d} \varphi \mathrm{~d} \psi$. Hence in the preceding expression we have a three-dimensional integral which may be calculated by using of the generating functions.

7. The generating function for the case of $N=3$

Following [32] let us define the generating function of zonal spherical polynomials for $\kappa=\frac{1}{2}$ by the formula

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}\right)=\sum \Phi_{l_{1}, l_{2}}\left(x_{1}, x_{2}, x_{3}\right) t_{1}^{l_{1}} t_{2}^{l_{2}} \tag{7.1}
\end{equation*}
$$

Then we obtain the integral representation

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}\right)=\int\left[\prod_{j=1}^{2}\left(1-\Xi_{j}(x ; n, \psi) t_{j}\right)\right]^{-1} \mathrm{~d} \mu(n) \mathrm{d} \mu(\psi) . \tag{7.2}
\end{equation*}
$$

Let a and b be two unit orthogonal vectors in two-dimensional plane orthogonal to the vector n. Then on this plane an arbitrary unit vector m has the form $\cos \psi \cdot a+\sin \psi \cdot b$. Integrating first on $\mathrm{d} \mu(\psi)$ we get

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}\right)=\int B^{-1}(n) C^{-1 / 2}(n) \mathrm{d} \mu(n) \quad \int \mathrm{d} \mu(n)=1 \tag{7.3}
\end{equation*}
$$

where

$$
\begin{equation*}
B=1-\left(n_{1}^{2} x_{1}+n_{2}^{2} x_{2}+n_{3}^{2} x_{3}\right) t_{1} \quad C=\left(1-x_{2}^{-1} t_{2}\right)\left(1-x_{3}^{-1} t_{2}\right) n_{1}^{2}+\cdots . \tag{7.4}
\end{equation*}
$$

The crucial step for the further integration is the use of the formula

$$
\begin{equation*}
B^{-1} C^{-1 / 2}=\int_{0}^{1} \mathrm{~d} \xi\left[B\left(1-\xi^{2}\right)+C \xi^{2}\right]^{-3 / 2} \tag{7.5}
\end{equation*}
$$

Using this, we obtain

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}\right)=\int_{0}^{1} \mathrm{~d} \xi \int\left[E\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}, n, \xi\right)\right]^{-3 / 2} \mathrm{~d} \mu(n) \tag{7.6}
\end{equation*}
$$

where

$$
\begin{equation*}
E\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}, n, \xi\right)=\sum_{j} e_{j}\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}, \xi\right) n_{j}^{2} \tag{7.7}
\end{equation*}
$$

We can now integrate on $\mathrm{d} \mu(n)$. Finally we obtain the one-dimensional integral representation for the generating function

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}\right)=\int_{0}^{1} \mathrm{~d} \xi\left[H\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}, \xi\right)\right]^{-1 / 2} \tag{7.8}
\end{equation*}
$$

where $H=h_{1} h_{2} h_{3}$, and functions $h_{j}\left(\xi ; t_{1}, t_{2}\right)$ are given by formulae

$$
\begin{equation*}
h_{j}\left(\xi ; t_{1}, t_{2}\right)=1-d_{j}\left(t_{1}, t_{2}\right)\left(1-\xi^{2}\right) \quad d_{j}\left(t_{1}, t_{2}\right)=\left(x_{j} t_{1}+x_{j}^{-1} t_{2}-t_{1} t_{2}\right) . \tag{7.9}
\end{equation*}
$$

From this it follows that if $z_{1}=x_{1}+x_{2}+x_{3}$ and $z_{2}=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}$, then

$$
\begin{array}{r}
H=a_{0}^{3}-a_{0}^{2}\left[z_{1} \tau_{1}+z_{2} \tau_{2}\right]+a_{0}\left[z_{2} \tau_{1}^{2}+z_{1} \tau_{2}^{2}+\left(z_{1} z_{2}-3\right) \tau_{1} \tau_{2}\right] \\
-\left[\tau_{1}^{3}+\tau_{2}^{3}+\tau_{1} \tau_{2}\left[\left(z_{2}^{2}-2 z_{1}\right) \tau_{1}+\left(z_{1}^{2}-2 z_{2}\right) \tau_{2}\right]\right] \tag{7.10}
\end{array}
$$

where $a_{0}=1+\left(1-\xi^{2}\right) t_{1} t_{2}, \tau_{1}=\left(1-\xi^{2}\right) t_{1}, \tau_{2}=\left(1-\xi^{2}\right) t_{2}$. Note that from (7.10) it follows that integral (7.8) is an elliptic one and may be expressed in terms of standard elliptic integrals.

Expanding $F\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}\right)$ in power series of the variable t_{2} we obtain

$$
\begin{equation*}
F\left(x_{1}, x_{2}, x_{3} ; t_{1}, t_{2}\right)=\sum_{q=0}^{\infty} F_{q}\left(x_{1}, x_{2}, x_{3} ; t_{1}\right) t_{2}^{q} \tag{7.11}
\end{equation*}
$$

We have

$$
\begin{equation*}
F_{0}\left(x_{1}, x_{2}, x_{3} ; t\right)=\int_{0}^{1} \mathrm{~d} \xi\left[H_{0}\right]^{-1 / 2} \tag{7.12}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{1}=\frac{1}{2} \int_{0}^{1} \mathrm{~d} \xi H_{1}\left[H_{0}\right]^{-3 / 2} \tag{7.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& H_{0}=1-z_{1} \tau_{1}+z_{2} \tau_{1}^{2}-\tau_{1}^{3} \\
& H_{1}=\left(1-\xi^{2}\right) z_{2}-\left[3 \xi^{2}+z_{1} z_{2}\left(1-\xi^{2}\right)\right] \tau_{1}+\left[2 z_{1} \xi^{2}+\left(1-\xi^{2}\right) z_{2}^{2}\right] \tau_{1}^{2}-z_{2} \tau_{1}^{3}
\end{aligned}
$$

From integral representation (7.8), many useful formulae may be obtained. Here we give only one of them, namely, as $z_{1}, z_{2} \rightarrow \infty$,

$$
\begin{equation*}
\Phi_{m, n}\left(z_{1}, z_{2}\right) \approx A_{m, n} z_{1}^{p} z_{2}^{q} \quad A_{m, n}=\frac{\left(\frac{1}{2}\right)_{m}\left(\frac{1}{2}\right)_{n}}{(1)_{m}(1)_{n}} \frac{(1)_{m+n}}{\left(\frac{3}{2}\right)_{m+n}} \tag{7.14}
\end{equation*}
$$

One can also show [38] that for arbitrary κ the analogous integral representation is valid
$F^{\kappa}\left(z_{1}, z_{2} ; t_{1}, t_{2}\right)=\sum_{m, n=1}^{\infty} A_{m, n}(\kappa) P_{m, n}^{\kappa}\left(z_{1}, z_{2}\right) t_{1}^{m} t_{2}^{n}=\int_{0}^{1}[H]^{-\kappa} \mathrm{d} \mu^{\kappa}(\xi)$
where H is given by (7.10), $P_{m, n}^{\kappa}\left(z_{1}, z_{2}\right) \sim z_{1}^{m} z_{2}^{n}$ as $z_{1}, z_{2} \rightarrow \infty$, and
$\mathrm{d} \mu^{\kappa}(\xi)=\left[\xi\left(1-\xi^{2}\right)\right]^{2 \kappa-1} \quad A_{m, n}(\kappa)=\frac{1}{2} \frac{\Gamma(\kappa) \Gamma(2 \kappa)}{\Gamma(3 \kappa)} \frac{(\kappa)_{m}(\kappa)_{n}}{(1)_{m}(1)_{n}} \frac{(2 \kappa)_{m+n}}{(3 \kappa)_{m+n}}$.
Note that for the case under consideration another integral representation for $N=3$ was obtained in [31] in terms of ${ }_{3} F_{2}$ hypergeometric series.

Acknowledgment

The paper was completed during my stay at the Max-Planck-Institut für Mathematik Bonn. I am grateful to the members of the Institute for their hospitality.

Appendix. Some formulae for Macdonald polynomials for the $\boldsymbol{A}_{\mathbf{2}}$ case (by Perelomov, Ragoucy and Zaugg)

Let us give first some necessary for us information. For other results and details, see [36].
The Macdonald polynomials of type A_{2} may be defined as polynomial eigenfunctions of the Macdonald difference equation

$$
\begin{array}{cc}
M^{1} P_{m, n}^{(q, t)}\left(x_{1}, x_{2}, x_{3}\right)=\lambda P_{m, n}^{(q, t)}\left(x_{1}, x_{2}, x_{3}\right) \quad P_{m, n}=z_{1}^{m} z_{2}^{n}+\text { lower terms } \tag{A.1}\\
z_{1}=x_{1}+x_{2}+x_{3} & z_{2}=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1} \quad z_{3}=x_{1} x_{2} x_{3}
\end{array}
$$

where

$$
\begin{equation*}
M^{1}=\prod_{j \neq k} \frac{\left(t x_{j}-x_{k}\right)}{\left(x_{j}-x_{k}\right)} T_{j} \quad T_{1} f\left(x_{1}, x_{2}, x_{3}\right)=f\left(q x_{1}, x_{2}, x_{3}\right), \ldots \tag{A.2}
\end{equation*}
$$

The Macdonald polynomials satisfy the following recurrence relation:

$$
\begin{equation*}
z_{1} P_{m, n}^{(q, t)}\left(z_{1}, z_{2}, z_{3}\right)=P_{m+1, n}^{(q, t)}+a_{m, n}(q, t) P_{m, n-1}^{(q, t)}+b_{m, n}(q, t) P_{m-1, n+1}^{(q, t)} \tag{A.3}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{m n}=c_{n} \tilde{c}_{m+n} \quad b_{m n}=c_{m} \\
& c_{m}(q, t)=\frac{\left(1-q^{m}\right)\left(1-t^{2} q^{m-1}\right)}{\left(1-t q^{m}\right)\left(1-t q^{m-1}\right)} \tag{A.4}\\
& \tilde{c}_{m+n}(q, t)=\left(\frac{1-t q^{m+n}}{1-t^{2} q^{m+n}}\right)\left(\frac{1-t^{3} q^{m+n-1}}{1-t^{2} q^{m+n-1}}\right) .
\end{align*}
$$

Note that

$$
\begin{equation*}
c_{m}(q, 1)=c_{m}(q, q)=1 \quad \tilde{c}_{m+n}(q, 1)=\tilde{c}_{m+n}(q, q)=1 . \tag{A.5}
\end{equation*}
$$

Now let us consider the case $t=q^{k}, k$ being an integer. In this case, the explicit expression for the generating function of polynomials $P_{n, 0}^{(k)} \equiv P_{n, 0}^{(q, t)}$ has the form

$$
\begin{align*}
& G^{(k)}(u)=\prod_{j=0}^{k-1} F^{1}\left(q^{j} u\right) \\
& G^{(k)}(u)=\sum^{2} C_{n}^{k} P_{n, 0}^{(k)} u^{n} \tag{A.6}\\
& C_{n}^{k}=\frac{[k]_{n}}{[1]_{n}} \quad[x]_{n}=[x][x+1] \ldots[x+n-1] \quad[x]=\frac{1-q^{x}}{1-x} .
\end{align*}
$$

From this we get a three-term recurrence relation analogous to (5.7)
$[n+1] \tilde{P}_{n+1}^{k}=[k+n] z_{1} \tilde{P}_{n}^{k}-[2 k+n-1] z_{2} \tilde{P}_{n-1}^{k}+[3 k+n-2] z_{3} \tilde{P}_{n-2}^{k}$
which follows from the recurrence relation
$\left(1-z_{1} u+z_{2} u^{2}-z_{3} u^{3}\right) G^{(k)}(u)=\left(1-z_{1} u q^{k}+z_{2} u^{2} q^{2 k}-z_{3} u^{3} q^{3 k}\right) G(q u)$.
From here, we obtain
$\tilde{P}_{0}^{\kappa}=1 \quad \tilde{P}_{1}^{\kappa}=[\kappa] z_{1} \quad \tilde{P}_{2}^{\kappa}=\frac{[\kappa+1][\kappa]}{[1][2]} z_{1}^{2}-\frac{[2 \kappa]}{[2]} z_{2}, \ldots \quad \tilde{P}_{m, 0}=\frac{[1]_{m}}{[\kappa]_{m}} P_{m, 0}$.

Let us also give the formula for the generating function for the case of arbitrary t :

$$
\begin{equation*}
G^{(q, t)}(u)=\prod_{j=0}^{\infty} \frac{\left(1-q^{j} t u\right)}{\left(1-q^{j} u\right)}=\sum_{j=0}^{\infty} c_{j}(q, t) u^{j} . \tag{A.9}
\end{equation*}
$$

Using the results from the book [36], it is not difficult to get the formulae

$$
\begin{equation*}
P_{m, 0}^{(q, t)} P_{0, n}^{(q, t)}=\sum_{i=0}^{\min (m, n)} \gamma_{m, n}^{i} P_{m-i, n-i}^{(q, t)} \tag{A.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{m, n}^{i}=\frac{(t ; q)_{i}\left(q^{m} ; q^{-1}\right)_{i}\left(q^{n} ; q^{-1}\right)_{i}\left(q^{m+n-1-i} t^{3} ; q^{-1}\right)_{i}}{(q ; q)_{i}\left(q^{m-1} t ; q^{-1}\right)_{i}\left(q^{n-1} t ; q^{-1}\right)_{i}\left(q^{m+n-i} t^{2} ; q^{-1}\right)_{i}} \tag{A.11}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{m, 0}^{(q, t)} P_{n, 0}^{(q, t)}=\sum_{i=0}^{\min (m, n)} \tilde{\gamma}_{m, n}^{i} P_{m+n-2 i, i}^{(q, t)} \tag{A.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\gamma}_{m, n}^{i}=\frac{(t ; q)_{i}\left(q^{m} ; q^{-1}\right)_{i}\left(q^{n} ; q^{-1}\right)_{i}\left(q^{m+n-i-1} t^{2} ; q^{-1}\right)_{i}}{(q ; q)_{i}\left(q^{m-1} t ; q^{-1}\right)_{i}\left(q^{n-1} t ; q^{-1}\right)_{i}\left(q^{m+n-i} t ; q^{-1}\right)_{i}} . \tag{A.13}
\end{equation*}
$$

Inverting formulae (A.10) and (A.11) as in [6], we arrive at the following theorem.
Theorem 1(a). The Macdonald polynomials $P_{m, n}^{(q, t)}$ of type A_{2} are given by the formula

$$
\begin{equation*}
P_{m, n}^{(q, t)}=\sum_{i=0}^{\min (m, n)} \beta_{m, n}^{i} P_{m-i, 0}^{(q, t)} P_{0, n-i}^{(q, t)} \tag{A.14}
\end{equation*}
$$

where constants $\beta_{m, n}^{i}$ have the form
$\beta_{m, n}^{i}=(-1)^{i} q^{i(i-1) / 2} \frac{\left(t ; q^{-1}\right)_{i}}{(q ; q)_{i}} \frac{1-q^{m+n-2 i} t^{3}}{1-q^{m+n-i} t^{3}} \frac{\left(q^{m} ; q^{-1}\right)_{i}\left(q^{n} ; q^{-1}\right)_{i}\left(q^{m+n-1} t^{3} ; q^{-1}\right)_{i}}{\left(q^{m-1} t ; q^{-1}\right)_{i}\left(q^{n-1} t ; q^{-1}\right)_{i}\left(q^{m+n-1} t^{2} ; q^{-1}\right)_{i}}$.
In similar way, we get the following theorem.
Theorem 2(a). The Macdonald polynomials $P_{m, n}^{(q, t)}$ of type A_{2} are given by the formula

$$
\begin{equation*}
\tilde{\gamma}_{m+n, n}^{n} P_{m, n}^{(q, t)}=\sum_{i=0}^{n} \tilde{\beta}_{m, n}^{i} P_{m+n+i, 0}^{(q, t)} P_{n-i, 0}^{(q, t)} \quad m \geqslant n \tag{A.15}
\end{equation*}
$$

where constants $\tilde{\gamma}_{m, n}^{i}$ are given by formula (A.13), and
$\tilde{\beta}_{m, n}^{i}=(-1)^{i} q^{i(i-1) / 2} \frac{\left(t ; q^{-1}\right)_{i}}{(q ; q)_{i}} \frac{\left(1-q^{m+2 i}\right)}{\left(1-q^{m}\right)} \frac{\left(q^{m} ; q\right)_{i}\left(q^{n} ; q^{-1}\right)_{i}\left(q^{m+n} t ; q\right)_{i}}{\left(q^{m+n+1} ; q\right)_{i}\left(q^{m+1} t ; q\right)_{i}\left(q^{n-1} t ; q^{-1}\right)_{i}}$.
From theorems 1(a) and 2(a), many interesting identities may be obtained. Here we give one of them:

$$
\begin{align*}
S_{n, l}^{k}=\sum_{i=0}^{l}(-1)^{i} & q^{i(i-1) / 2} \frac{[3 k+n-2 i]}{[3 k+n-i]}\left(\prod_{j=1}^{i} \frac{[k-j+1]}{[j]} \frac{[3 k+n-j]}{[2 k+n-j]}\right) \\
& \times\left(\prod_{j=0}^{l-i-1} \frac{[k+j]}{[j+1]} \frac{[3 k+n-l-i-j-1]}{[2 k+n-l-i-j]}\right)=0 \tag{A.17}
\end{align*}
$$

where $[n]=\left(1-q^{n}\right) /(1-q)$.

The simplest version of this formula is

$$
\begin{equation*}
\sum_{i=0}^{l}(-1)^{i} q^{i(i-1) / 2} \frac{[k+l-i-1]!}{[i]![l-i]![k-i]!}=0 \tag{A.18}
\end{equation*}
$$

We give below the list of polynomials $P_{m, n}^{(q, t)}$ at $m+n \leqslant 4$:

$$
\begin{aligned}
P_{0,0}^{(q, t)}= & \quad P_{1,0}^{(q, t)}=z_{1} \quad P_{0,1}^{(q, t)}=z_{2} \\
P_{2,0}^{(q, t)}= & z_{1}^{2}- \\
P_{1,1}^{(q, t)}= & z_{1} z_{2}-\frac{(1-q)(1+t)}{(1-q t)} z_{2} \\
P_{3,0}^{(q, t)}= & z_{1}^{3}-\frac{(1-q)\left(1+t+t^{2}\right)}{\left(1-q t^{2}\right)} z_{3} \\
P_{2,1}^{(q, t)}=z_{1}^{2} z_{2}- & -\frac{(1-q)(1+t)}{1-q t} z_{2}^{2}-\frac{\left(1-q^{2}\right)\left(1-q t^{3}\right)}{(1-q t)^{2}(1+q t)} z_{1} z_{3} \\
P_{4,0}^{(q, t)=}=z_{1}^{4}- & \frac{(1-q)\left(3+2 q+q^{2}+t+2 q t+3 q^{2} t\right)}{1-q^{3} t} z_{1}^{2} z_{2} \\
& +\frac{(1-q)^{2}\left(1+q+q^{2}\right)(1+t)(1+q t)}{\left(1-q^{2} t\right)\left(1-q^{3} t\right)} z_{2}^{2} \\
& +\frac{(1-q)^{2}(1+q)\left(2+q+q^{2}+t+2 q t+q^{2} t+t^{2}+q t^{2}+2 q^{2} t^{2}\right)}{\left(1-q^{2} t\right)\left(1-q^{3} t\right)} z_{1} z_{3} \\
P_{3,1}^{(q, t)=}=z_{1}^{3} z_{2}- & -\frac{(1-q)(2+q+t+2 q t)}{1-q^{2} t} z_{1} z_{2}^{2}-\frac{\left(1-q^{3}\right)\left(1-q^{2} t^{3}\right)}{\left(1-q^{2} t\right)\left(1-q^{3} t^{2}\right)} z_{1}^{2} z_{3} \\
& +\frac{(1-q)^{2}}{\left(1-q^{2} t\right)\left(1-q^{3} t^{2}\right)} \times\left(2+2 q+q^{2}+2 t+4 q t+3 q^{2} t+q^{3} t+t^{2}\right. \\
& \left.+3 q t^{2}+4 q^{2} t^{2}+2 q^{3} t^{2}+q t^{3}+2 q^{2} t^{3}+2 q^{3} t^{3}\right) z_{2} z_{3} \\
P_{2,2}^{(q, t)=}=z_{1}^{2} z_{2}^{2}- & \frac{(1-q)(1+t)}{1-q t}\left(z_{2}^{3}+z_{1}^{3} z_{3}\right) \\
& \quad-\frac{(1-q)\left(3 q+q^{2}-3 t+2 q^{2} t+q^{3} t-t^{2}-2 q t^{2}+3 q^{3} t^{2}-q t^{3}-3 q^{2} t^{3}\right)}{(1-q t)\left(1-q^{3} t^{2}\right)} \\
& \times z_{1} z_{2} z_{3} \\
& +\frac{(1-q)^{2}(1+q)\left(1+t+t^{2}\right)\left(q-t+q^{2} t-q t^{2}+q^{3} t^{2}-q^{2} t^{3}\right)}{(1-q t)\left(1-q^{2} t^{2}\right)\left(1-q^{3} t^{2}\right)} z_{3}^{2}
\end{aligned}
$$

References

[1] Olshanetsky M A and Perelomov A M 1977 Lett. Math. Phys. 2 7-13
[2] Calogero F 1971 J. Math. Phys. 12 419-36
[3] Sutherland B 1972 Phys. Rev. A 4 2019-21
[4] Jack H 1970 Proc. R. Soc. Edinburgh A 69 1-18
[5] Perelomov A M 1998 J. Phys. A: Math. Gen. 31 L31-7
[6] Perelomov A M, Ragoucy E and Zaugg Ph 1998 J. Phys. A: Math. Gen. 31 L559-65
[7] Macdonald I G 1988 Orthogonal polynomials associated with root systems Preprint
[8] Olshanetsky M A and Perelomov A M 1978 Funct. Anal. Appl. 12 121-8
[9] Olshanetsky M A and Perelomov A M 1983 Phys. Rep. 94 313-404
[10] Weyl H 1925 Math. Z. 23 271-309
[11] Weyl H 1926 Math. Z. 24 328-95
[12] Harish-Chandra 1958 Am. J. Math. 80 241-310
Harish-Chandra 1958 Am. J. Math. 80 553-613
[13] Helgason S 1978 Differential Geometry, Lie Groups and Symmetric Spaces (New York: Academic)
[14] Vilenkin N Ja 1968 Special functions and the theory of group representations Am. Math. Soc. Transl. Monographs 22
[15] Herz C 1955 Ann. Math. 61 474-523
[16] Koornwinder T 1974 Proc. K. Ned. Akad. Wet. A 77 48-66
Koornwinder T 1974 Proc. K. Ned. Akad. Wet. A 77 357-81
[17] James A 1975 Theory and Application of Special Functions (New York: Academic) pp 497-520
[18] Vretare L 1976 Math. Scand. 39 343-58
[19] Sekiguchi J 1977 Publ. RIMS Kyoto Univ. Suppl. 12 455-9
[20] Koornwinder T and Sprinkhuizen-Kuyper I 1978 SIAM J. Math. Anal. 9 457-83
[21] Macdonald I G 1982 SIAM J. Math. Anal. 13 988-1007
[22] Prati M-C 1984 Lett. Nuovo Cimento 41275
[23] Vretare L 1984 SIAM J. Math. Anal. 15 805-33
[24] Heckman G and Opdam E 1987 Composito Math. 64 329-52
[25] Heckman G 1987 Composito Math. 64 353-73
[26] Opdam E 1988 Composito Math. 67 21-49
[27] Opdam E 1988 Composito Math. 67 191-209
[28] Lassalle M 1989 C.R. Acad. Sci. I 309 941-4
[29] Opdam E 1989 Inv. Math. 98 1-18
[30] Stanley R P 1989 Adv. Math. 77 76-115
[31] Kuznetsov V B and Sklyanin E K 1995 RIMS Kokyuroku 919 27-34
[32] Cariñena J M and Perelomov A M 1997 J. Phys. A: Math. Gen. 30 L495-501
[33] Ruijsenaars S 1987 Commun. Math. Phys. 110 191-213
[34] Humphreys J E 1972 Introduction to Lie Algebras and Representation Theory (New York: Springer)
[35] Onishchik A L and Vinberg E B 1990 Lie Groups and Algebraic Groups (Berlin: Springer)
[36] Macdonald I G 1995 Symmetric Functions and Hall Polynomials (Oxford: Oxford University Press)
[37] Patera J and Sharp R T 1978 Proc. 7th Int. Colloq. on Group Theoretical Methods in Physics (Austin, TX)
[38] Perelomov A M 1998 Proc. 2nd Int. Workshop on Lie Theory and its Applications in Physics (Singapore: World Scientific) pp 171-83

